About this Journal Submit a Manuscript Table of Contents
Science and Technology of Nuclear Installations
Volume 2012 (2012), Article ID 928406, 12 pages
http://dx.doi.org/10.1155/2012/928406
Research Article

Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry

1School of Mechanical Engineering, Shiraz University, Shiraz 71348-51154, Iran
2Department of Nuclear Engineering, Seoul National University, Seoul 151-744, Republic of Korea
3PHILOSOPHIA Inc., 1 Gwanak Road, Gwanak-gu, Seoul 151-744, Republic of Korea

Received 10 July 2012; Revised 7 September 2012; Accepted 11 September 2012

Academic Editor: Iztok Tiselj

Copyright © 2012 Mohammad Nazififard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Experimental Heat Transfer, vol. 11, no. 2, pp. 151–170, 1998. View at Scopus
  2. Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” Journal of Heat Transfer, vol. 125, no. 1, pp. 151–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Bianco, F. Chiacchio, O. Manca, and S. Nardini, “Numerical investigation of nanofluids forced convection in circular tubes,” Applied Thermal Engineering, vol. 29, no. 17-18, pp. 3632–3642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Bianco, O. Manca, and S. Nardini, “Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube,” International Journal of Thermal Sciences, vol. 50, no. 3, pp. 341–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Bianco, O. Manca, and S. Nardini, “Numerical simulation of water/ Al2O3 nanofluid turbulent convection,” Advances in Mechanical Engineering, vol. 2010, Article ID 976254, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Bianco, S. Nardini, and O. Manca, “Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes,” Nanoscale Research Letters, vol. 6, no. 1, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. E. B. Maïga, C. T. Nguyen, N. Galanis, G. Roy, T. Maré, and M. Coqueux, “Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 16, no. 3, pp. 275–292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Rostamani, S. F. Hosseinizadeh, M. Gorji, and J. M. Khodadadi, “Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1426–1431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Behzadmehr, M. Saffar-Avval, and N. Galanis, “Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach,” International Journal of Heat and Fluid Flow, vol. 28, no. 2, pp. 211–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Corcione, M. Cianfrini, and A. Quintino, “Heat transfer of nanofluids in turbulent pipe flow,” International Journal of Thermal Sciences, vol. 56, pp. 58–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Rahimi-Esbo, A. A. Ranjbar, A. Ramiar, M. Rahgoshay, and A. Arya, “Numerical study of the turbulent forced convection jet flow of nanofluid in a converging duct,” Numerical Heat Transfer A, vol. 62, no. 1, pp. 60–79, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Ghaffari, A. Behzadmehr, and H. Ajam, “Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach,” International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1551–1558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Massoudi and T. X. Phuoc, “Remarks on constitutive modeling of nanofluids,” Advances in Mechanical Engineering, vol. 2012, Article ID 927580, 6 pages, 2012. View at Publisher · View at Google Scholar
  16. R. B. Mansour, N. Galanis, and C. T. Nguyen, “Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids,” Applied Thermal Engineering, vol. 27, no. 1, pp. 240–249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Nazififard, M. R. Nematollahi, K. Jafarpour, and K. Y. Suh, “Augmented safety heat transport in research reactor IR-40 using nanofluid,” atw—International Journal for Nuclear Power, vol. 57, pp. 262–270, 2012.
  18. M. Nazififard, M. R. Nematollahi, and K. Y. Suh, “Numerical analysis of water-based nanofluid coolant for small modular reactor,” in Proceedings of the ASME 2011 Small Modular Reactors Symposium (SMR '11), Washington, DC, USA, September 2011.
  19. M. Nazififard, M. Nematollahi, K. Jafarpur, and K. Y. Suh, “Computational analysis for research reactor IR-40 rod bundle,” atw—International Journal for Nuclear Power, vol. 57, no. 8/9, pp. 523–529, 2012.
  20. S. J. Palm, G. Roy, and C. T. Nguyen, “Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties,” Applied Thermal Engineering, vol. 26, no. 17-18, pp. 2209–2218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. Eastman, S. R. Phillpot, S. U. S. Choi, and P. Keblinski, “Thermal transport in nanofluids,” Annual Review of Materials Research, vol. 34, pp. 219–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” International Journal of Heat and Mass Transfer, vol. 50, no. 19-20, pp. 4105–4116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Buongiorno and B. Truong, “Preliminary study of water-based nanofluid coolants for PWRs,” Transactions of the American Nuclear Society, vol. 92, pp. 383–384, 2005.
  24. J. Buongiorno, L. W. Hu, G. Apostolakis, R. Hannink, T. Lucas, and A. Chupin, “A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors,” Nuclear Engineering and Design, vol. 239, no. 5, pp. 941–948, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Hadad, A. Hajizadeh, K. Jafarpour, and B. D. Ganapol, “Neutronic study of nanofluids application to VVER-1000,” Annals of Nuclear Energy, vol. 37, no. 11, pp. 1447–1455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Sarkar, “A critical review on convective heat transfer correlations of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 15, no. 6, pp. 3271–3277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. R. Nematollahi and M. Nazifi, “Enhancement of heat transfer in a typical pressurized water reactor by different mixing vanes on spacer grids,” Energy Conversion and Management, vol. 49, no. 7, pp. 1981–1988, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. ANSYS FLUENT Workbench User's Guide. Release 12.1. ANSYS, Inc., 2009.
  29. C. C. Liu and Y. M. Ferng, “Numerically simulating the thermal-hydraulic characteristics within the fuel rod bundle using CFD methodology,” Nuclear Engineering and Design, vol. 240, no. 10, pp. 3078–3086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, “Development of turbulence models for shear flows by a double expansion technique,” Physics of Fluids A, vol. 4, no. 7, pp. 1510–1520, 1992. View at Scopus
  31. F. W. Dittus and L. M. K. Boelter, “Heat transfer in automobile radiators of the tubular type,” University of California Publications of Engineering, vol. 2, pp. 443–461, 1930.