About this Journal Submit a Manuscript Table of Contents
Tuberculosis Research and Treatment
Volume 2012 (2012), Article ID 289136, 7 pages
http://dx.doi.org/10.1155/2012/289136
Research Article

Antimycobacterial Activities of Novel 5-(1H-1,2,3-Triazolyl)Methyl Oxazolidinones

1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
2Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait

Received 17 November 2011; Accepted 14 February 2012

Academic Editor: Zarir Farokh Udwadia

Copyright © 2012 Oludotun Adebayo Phillips et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “The U.S government and global tuberculosis,” Fact Sheet, March 2011.
  2. WHO, “The global tuberculosis epidemic,” Fact Sheet, November 2010.
  3. A. Koul, E. Arnoult, N. Lounis, J. Guillemont, and K. Andries, “The challenge of new drug discovery for tuberculosis,” Nature, vol. 469, no. 7331, pp. 483–490, 2011. View at Publisher · View at Google Scholar
  4. WHO, “The global tuberculosis epidemic,” Fact Sheet, no. 104, November 2010.
  5. A. Matteelli, A. C. C. Carvalho, K. E. Dooley, and A. Kritski, “TMC207: The first compound of a new class of potent anti-tuberculosis drugs,” Future Microbiology, vol. 5, no. 6, pp. 849–858, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. F. Schecter, C. Scott, L. True, A. Raftery, J. Flood, and S. Mase, “Linezolid in the treatment of multidrug-resistant tuberculosis,” Clinical Infectious Diseases, vol. 50, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. C. Rivers and R. L. Mancera, “New anti-tuberculosis drugs in clinical trials with novel mechanisms of action,” Drug Discovery Today, vol. 13, no. 23-24, pp. 1090–1098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. W. W. Yew, M. Cynamon, and Y. Zhang, “Emerging drugs for the treatment of tuberculosis,” Expert Opinion on Emerging Drugs, vol. 16, no. 1, pp. 1–21, 2011. View at Publisher · View at Google Scholar
  9. O. A. Phillips, E. E. Udo, A. A. M. Ali, and N. Al-Hassawi, “Synthesis and antibacterial activity of 5-substituted oxazolidinones,” Bioorganic and Medicinal Chemistry, vol. 11, no. 1, pp. 35–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. O. A. Phillips, E. E. Udo, A. A. M. Ali, and S. M. Samuel, “Synthesis and antibacterial activity of new N-linked 5-triazolylmethyl oxazolidinones,” Bioorganic and Medicinal Chemistry, vol. 13, no. 12, pp. 4113–4123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. O. A. Phillips, E. E. Udo, A. A. M. Ali, and S. M. Samuel, “Structure-antibacterial activity of arylcarbonyl- and arylsulfonyl-piperazine 5-triazolylmethyl oxazolidinones,” European Journal of Medicinal Chemistry, vol. 42, no. 2, pp. 214–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. O. A. Phillips, E. E. Udo, and S. M. Samuel, “Synthesis and structure-antibacterial activity of triazolyl oxazolidinones containing long chain acyl moiety,” European Journal of Medicinal Chemistry, vol. 43, no. 5, pp. 1095–1104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Reck, F. Zhou, M. Girardot et al., “Identification of 4-substituted 1,2,3-triazoles as novel oxazolidinone antibacterial agents with reduced activity against monoamine oxidase A,” Journal of Medicinal Chemistry, vol. 48, no. 2, pp. 499–506, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. I. Hauck, C. Cederberg, A. Doucette et al., “New carbon-linked azole oxazolidinones with improved potency and pharmacokinetics,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 2, pp. 337–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. “Tuberculosis antimicrobial acquisition and coordinating facility (TAACF),” http://www.taacf.org/.
  16. L. A. Collins and S. G. Franzblau, “Microplate Alamar blue assay versus BACTEC 460 system for high- throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 5, pp. 1004–1009, 1997. View at Scopus
  17. U. Das, S. Das, B. Bandy, J. P. Stables, and J. R. Dimmock, “N-Aroyl-3,5-bis(benzylidene)-4-piperidones: A novel class of antimycobacterial agents,” Bioorganic and Medicinal Chemistry, vol. 16, no. 7, pp. 3602–3607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. O. A. Phillips, L. H. Sharaf, M. E. Abdel-Hamid, and R. Varghese, “Assessment of the stability of novel antibacterial triazolyl oxazolidinones using a stability-indicating high-performance liquid chromatography method,” Medical Principles and Practice, vol. 20, no. 1, pp. 51–59, 2011. View at Publisher · View at Google Scholar