About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 168953, 7 pages
http://dx.doi.org/10.1100/2012/168953
Review Article

Arachidonic Acid Derivatives and Their Role in Peripheral Nerve Degeneration and Regeneration

1Departamento de Medicina Interna, Hospital Universitario “José Eleuterio González”, Universidad Autónoma de Nuevo León, School of Medicine, Avenida Francisco I. Madero y Dr. Eduardo Aguirre Pequeño S/No, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico
2Departamento de Fisiologia, Hospital Universitario “José Eleuterio González”, Universidad Autónoma de Nuevo León, School of Medicine, Avenida Francisco I. Madero y Dr. Eduardo Aguirre Pequeño S/No, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico

Received 2 June 2012; Accepted 10 August 2012

Academic Editors: N. L. Banik, F. J. Carod-Artal, and I. Fischer

Copyright © 2012 Carlos Rodrigo Camara-Lemarroy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Dubový, “Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction,” Annals of Anatomy, vol. 193, no. 4, pp. 267–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. C. R. Cámara-Lemarroy, F. J. Guzmán-de la Garza, and N. E. Fernández-Garza, “Molecular inflammatory mediators in peripheral nerve degeneration and regeneration,” NeuroImmunoModulation, vol. 17, no. 5, pp. 314–324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Alberghina and A. M. Giuffrida Stella, “Changes of phospholipid-metabolizing and lysosomal enzymes in hypoglossal nucleus and ventral horn motoneurons during regeneration of craniospinal nerves,” Journal of Neurochemistry, vol. 51, no. 1, pp. 15–20, 1988. View at Scopus
  4. A. A. Farooqui, H. C. Yang, and L. Horrocks, “Involvement of phospholipase A2 in neurodegeneration,” Neurochemistry International, vol. 30, no. 6, pp. 517–522, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. P. K. Stys, “General mechanisms of axonal damage and its prevention,” Journal of the Neurological Sciences, vol. 233, no. 1-2, pp. 3–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Paul and N. A. Gregson, “An immunohistochemical study of phospholipase A2 in peripheral nerve during Wallerian degeneration,” Journal of Neuroimmunology, vol. 39, no. 1-2, pp. 31–48, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Shin, Y. Lee, and K. B. Sim, “Involvement of cyclooxygenase-1 and -2 in the sciatic nerve of rats with experimental autoimmune neuritis,” Immunological Investigations, vol. 32, no. 3, pp. 123–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Martini, S. Fischer, R. López-Vales, and S. David, “Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease.,” Glia, vol. 56, no. 14, pp. 1566–1577, 2008. View at Scopus
  9. L. N. Berti-Mattera, S. Harwalkar, B. Hughes, P. L. Wilkins, and K. Almhanna, “Proliferative and morphological effects of endothelins in Schwann cells: roles of p38 mitogen-activated protein kinase and Ca2+-independent phospholipase A2,” Journal of Neurochemistry, vol. 79, no. 6, pp. 1136–1148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. L. N. Berti-Mattera, P. L. Wilkins, S. Harwalkar, Z. Madhun, K. Almhanna, and R. Mattera, “Endothelins regulate arachidonic acid release and mitogen-activated protein kinase activity in Schwann cells,” Journal of Neurochemistry, vol. 75, no. 6, pp. 2316–2326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Saika, H. Kiyama, T. Matsunaga, and M. Tohyama, “Differential regulation of phospholipase C isozymes in the rat facial nucleus following axotomy,” Neuroscience, vol. 59, no. 1, pp. 121–129, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. R. López-Vales, X. Navarro, T. Shimizu et al., “Intracellular phospholipase A2 group IVA and group VIA play important roles in Wallerian degeneration and axon regeneration after peripheral nerve injury,” Brain, vol. 131, pp. 2620–2631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Edström, M. Briggman, and P. A. Ekström, “.Phospholipase A2 activity is required for regeneration of sensory axons in cultured adult sciatic nerves,” Journal of Neuroscience Research, vol. 43, pp. 183–189, 1996.
  14. S. Nakamura, “Involvement of phospholipase A2 in axonal regeneration of brain noradrenergic neurones,” NeuroReport, vol. 4, no. 4, pp. 371–374, 1993. View at Scopus
  15. S. De, M. A. Trigueros, A. Kalyvas, and S. David, “Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during wallerian degeneration,” Molecular and Cellular Neuroscience, vol. 24, no. 3, pp. 753–765, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Okuda, H. Saito, and H. Katsuki, “Arachidonic acid: toxic and trophic effects on cultured hippocampal neurons,” Neuroscience, vol. 63, no. 3, pp. 691–699, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Dehaut, I. Bertrand, T. Miltaud, A. Pouplard-Barthelaix, and M. Maingault, “n-6 Polyunsaturated fatty acids increase the neurite length of PC12 cells and embryonic chick motoneurons,” Neuroscience Letters, vol. 161, no. 2, pp. 133–136, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. E. J. Williams, F. S. Walsh, and P. Doherty, “The production of arachidonic acid can account for calcium channel activation in the second messenger pathway underlying neurite outgrowth stimulated by NCAM, N-cadherin, and L1,” Journal of Neurochemistry, vol. 62, no. 3, pp. 1231–1234, 1994. View at Scopus
  19. R. G. Kurumbail, J. R. Kiefer, and L. J. Marnett, “Cyclooxygenase enzymes: catalysis and inhibition,” Current Opinion in Structural Biology, vol. 11, no. 6, pp. 752–760, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. T. D. Warner and J. A. Mitchell, “Cyclooxygenase-3 (COX-3): filling in the gaps toward a COX continuum?” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13371–13373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Gupta, B. S. Selinsky, C. J. Kaub, A. K. Katz, and P. J. Loll, “The 2.0 a resolution crystal structure of prostaglandin H2 synthase-1: structural insights into an unusual peroxidase,” Journal of Molecular Biology, vol. 335, no. 2, pp. 503–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. R. M. Garavito and A. M. Mulichak, “The structure of mammalian cyclooxygenases,” Annual Review of Biophysics and Biomolecular Structure, vol. 32, pp. 183–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Ma and J. C. Eisenach, “Morphological and pharmacological evidence for the role of peripheral prostaglandins in the pathogenesis of neuropathic pain,” European Journal of Neuroscience, vol. 15, no. 6, pp. 1037–1047, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Ma and R. Quirion, “Does COX2-dependent PGE2 play a role in neuropathic pain?” Neuroscience Letters, vol. 437, no. 3, pp. 165–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Schwab, K. Brechtel, T. D. Nguyen, and H. J. Schluesener, “Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/macrophages and upregulation by endothelium following spinal cord injury,” Journal of Neuroimmunology, vol. 111, no. 1-2, pp. 122–130, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Fu, J. Hue, and S. Li, “Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition,” Journal of Neuroscience, vol. 27, no. 15, pp. 4154–4164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Klegeris and P. L. McGeer, “Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity,” Neurobiology of Aging, vol. 23, no. 5, pp. 787–794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. C. R. Cámara-Lemarroy, F. J. Guzmán-de la Garza, E. A. Barrera-Oranday, A. J. Cabello-García, A. García-Tamez, and N. E. Fernández-Garza, “Celecoxib accelerates functional recovery after sciatic nerve crush in the rat,” Journal of Brachial Plexus and Peripheral Nerve Injury, vol. 3, article 25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Syriatowicz, D. Hu, J. S. Walker, and D. J. Tracey, “Hyperalgesia due to nerve injury: role of prostaglandins,” Neuroscience, vol. 94, no. 2, pp. 587–594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Muja and G. H. DeVries, “Prostaglandin E2 and 6-keto-prostaglandin F1α production is elevated following traumatic injury to sciatic nerve,” Glia, vol. 46, no. 2, pp. 116–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Muja, J. K. Nelson, and G. H. DeVries, “Schwann cells express IP prostanoid receptors coupled to an elevation in intracellular cyclic AMP,” Journal of Neuroscience Research, vol. 85, no. 6, pp. 1159–1169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Kunori, S. Matsumura, E. Okuda-Ashitaka et al., “A novel role of prostaglandin E2 in neuropathic pain: blockade of microglial migration in the spinal cord,” Glia, vol. 59, no. 2, pp. 208–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. S. Marshall, K. Gomi, M. G. Blennerhassett, and J. Bienenstock, “Nerve growth factor modifies the expression of inflammatory cytokines by mast cells via a prostanoid-dependent mechanism,” Journal of Immunology, vol. 162, no. 7, pp. 4271–4276, 1999. View at Scopus
  34. A. Milcan, E. Arslan, O. T. Bagdatoglu et al., “The effect of alprostadil on ischemia-reperfusion injury of peripheral nerve in rats,” Pharmacological Research, vol. 49, no. 1, pp. 67–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Tang, Y. Hua, J. Su et al., “Expression of VEGF and neural repair after alprostadil treatment in a rat model of sciatic nerve crush injury,” Neurology India, vol. 57, no. 4, pp. 387–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Redensek, K. I. Rathore, J. L. Berard et al., “Expression and detrimental role of hematopoietic prostaglandin D synthase in spinal cord contusion injury,” Glia, vol. 59, no. 4, pp. 603–614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Kawamura, T. Akira, M. Watanabe, and Y. Kagitani, “Prostaglandin E1 prevents apoptotic cell death in superficial dorsal horn of rat spinal cord,” Neuropharmacology, vol. 36, no. 8, pp. 1023–1030, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kogawa, H. Yasuda, M. Terada, K. Maeda, and R. Kikkawa, “Apoptosis and impaired axonal regeneration of sensory neurons after nerve crush in diabetic rats,” NeuroReport, vol. 11, no. 4, pp. 663–667, 2000. View at Scopus
  39. H. Kudo, T. Nakazawa, M. Shimura et al., “Neuroprotective effect of latanoprost on rat retinal ganglion cells,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 8, pp. 1003–1009, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Kanamori, M. Naka, M. Fukuda, M. Nakamura, and A. Negi, “Latanoprost protects rat retinal ganglion cells from apoptosis in vitro and in vivo,” Experimental Eye Research, vol. 88, no. 3, pp. 535–541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. S. Sharma and J. Westman, “Prostaglandins modulate constitutive isoform of heat shock protein (72 kD) response following trauma to the rat spinal cord,” Acta Neurochirurgica, Supplement, vol. 1997, no. 70, pp. 134–137, 1997. View at Scopus
  42. G. A. Newfry and K. J. Jones, “Differential effects of facial nerve transection on heat shock protein 70 expression in the developing and adult hamster facial nucleus,” Metabolic Brain Disease, vol. 13, no. 3, pp. 253–257, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Ma and R. Quirion, “Up-regulation of interleukin-6 induced by prostaglandin E2 from invading macrophages following nerve injury: an in vivo and in vitro study,” Journal of Neurochemistry, vol. 93, no. 3, pp. 664–673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. H. L. Zhang, Z. L. Gu, S. I. Savitz, F. Han, K. Fukunaga, and Z. H. Qin, “Neuroprotective effects of prostaglandin A1 in rat models of permanent focal cerebral ischemia are associated with nuclear factor-κB inhibition and peroxisome proliferator-activated receptor-γ up-regulation,” Journal of Neuroscience Research, vol. 86, no. 5, pp. 1132–1141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. W. Phillis, L. A. Horrocks, and A. A. Farooqui, “Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders,” Brain Research Reviews, vol. 52, no. 2, pp. 201–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Noguchi and M. Okubo, “Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain,” Biological & Pharmaceutical Bulletin, vol. 34, pp. 1163–1169, 2011.
  47. A. L. Constable, P. J. Armati, and H. P. Hartung, “DMSO induction of the leukotriene LTC4 by Lewis rat Schwann cells,” Journal of the Neurological Sciences, vol. 162, no. 2, pp. 120–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. C. R. Pace-Asciak, “Hepoxilins: a review on their cellular actions,” Biochimica et Biophysica Acta, vol. 1215, no. 1-2, pp. 1–8, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. V. Rehder, J. R. Jensen, and S. B. Kater, “The initial stages of neural regeneration are dependent upon intracellular calcium levels,” Neuroscience, vol. 51, no. 3, pp. 565–574, 1992. View at Publisher · View at Google Scholar · View at Scopus
  50. N. E. Ziv and M. E. Spira, “Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones,” Journal of Neuroscience, vol. 17, no. 10, pp. 3568–3579, 1997. View at Scopus
  51. M. S. Geddis and V. Rehder, “Initial stages of neural regeneration in Helisoma trivolvis are dependent upon PLA2 activity,” Journal of Neurobiology, vol. 54, no. 4, pp. 555–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. N. R. Smalheiser, S. Dissanayake, and A. Kapil, “Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites,” Brain Research, vol. 721, no. 1-2, pp. 39–48, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Wada, M. Arita, A. Nakajima et al., “Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation,” FASEB Journal, vol. 20, no. 11, pp. 1785–1792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Kiryu-Seo and H. Kiyama, “The nuclear events guiding successful nerve regeneration,” Frontiers in Molecular Neuroscience, vol. 4, article 53, 2011.
  55. F. G. Bottone, J. M. Martinez, B. Alston-Mills, and T. E. Eling, “Gene modulation by Cox-1 and Cox-2 specific inhibitors in human colorectal carcinoma cancer cells,” Carcinogenesis, vol. 25, no. 3, pp. 349–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. S. H. Choi, R. Langenbach, and F. Bosetti, “Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury,” FASEB Journal, vol. 22, no. 5, pp. 1491–1501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Singh, J. Hoggatt, P. Hu et al., “Blockade of prostaglandin E2 signaling through EP1 and EP3 receptors attenuates Flt3L-dependent dendritic cell development from hematopoietic progenitor cells,” Blood, vol. 119, pp. 1671–1682, 2012.
  58. K. S. Chun and R. Langenbach, “The prostaglandin E2 receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin,” Molecular Carcinogenesis, vol. 50, no. 6, pp. 439–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. A. Frias, S. Somers, C. Gerber-Wicht, L. H. Opie, S. Lecour, and U. Lang, “The PGE2-Stat3 interaction in doxorubicin-induced myocardial apoptosis,” Cardiovascular Research, vol. 80, no. 1, pp. 69–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Axelsson, C. Lönnroth, M. Andersson, and K. Lundholm, “Mechanisms behind COX-1 and COX-2 inhibition of tumor growth in vivo,” International Journal of Oncology, vol. 37, no. 5, pp. 1143–1152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Zheng, X. Feng, L. Hou et al., “Latanoprost promotes neurite outgrowth in differentiated RGC-5 cells via the PI3K-Akt-mTOR signaling pathway,” Cellular and Molecular Neurobiology, vol. 31, no. 4, pp. 597–604, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. A. C. de Oliveira, E. Candelario-Jalil, J. Langbein et al., “Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia,” Journal of Neuroinflammation, vol. 9, article 2, 2012.
  63. B. St-Jacques and W. Ma, “Role of prostaglandin E2 in the synthesis of the pro-inflammatory cytokine interleukin-6 in primary sensory neurons: an in vivo and in vitro study,” Journal of Neurochemistry, vol. 118, no. 5, pp. 841–854, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. A. S. Moolwaney and O. J. Igwe, “Regulation of the cyclooxygenase-2 system by interleukin-1β through mitogen-activated protein kinase signaling pathways: a comparative study of human neuroglioma and neuroblastoma cells,” Molecular Brain Research, vol. 137, no. 1-2, pp. 202–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Nakanishi, M. Nakamura, H. Mukuno, A. Kanamori, G. M. Seigel, and A. Negi, “Latanoprost rescues retinal neuro-glial cells from apoptosis by inhibiting caspase-3, which is mediated by p44/p42 mitogen-activated protein kinase,” Experimental Eye Research, vol. 83, no. 5, pp. 1108–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Kambe, H. Yoshioka, H. Kamitani, T. Watanabe, S. J. Baek, and T. E. Eling, “The cyclooxygenase inhibitor sulindac sulfide inhibits EP4 expression and suppresses the growth of glioblastoma cells,” Cancer Prevention Research, vol. 2, no. 12, pp. 1088–1099, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Zheng, J. D. Ritzenthaler, X. Sun, J. Roman, and S. Han, “Prostaglandin E2 stimulates human lung carcinoma cell growth through induction of integrin-linked kinase: the involvement of EP4 and Sp1,” Cancer Research, vol. 69, no. 3, pp. 896–904, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Kanda, S. Koike, and S. Watanabe, “Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 2, pp. 796–804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. M. H. Chang, H. T. Chiang, S. S. J. Lee, L. P. Ger, and Y. K. Lo, “Oral drug of choice in carpal tunnel syndrome,” Neurology, vol. 51, no. 2, pp. 390–393, 1998. View at Scopus