About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 173829, 10 pages
http://dx.doi.org/10.1100/2012/173829
Review Article

A Critical View of Current State of Phytotechnologies to Remediate Soils: Still a Promising Tool?

1Departamento de Ciencia y Tecnología Agraria, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48-30203 Cartagena, Spain
2Institute of Terrestrial Ecosystems, Swiss Federal Institute of Technology (ETH Zürich), Universitaestrasse 16, 8092 Zürich, Switzerland
3Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand

Received 7 October 2011; Accepted 2 November 2011

Academic Editors: R. Clemente and J. Ruelas-Inzunza

Copyright © 2012 Héctor M. Conesa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. GACGC (German Advisory Council on Global Change), World in Transition: The Threat to Soils, Economica Verlag GmbH, Bonn, Germany, 1994.
  2. CEC (Commission of the European Communities), Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions: Towards a Thematic Strategy for Soil Protection, COM(2002) 179 final, European Commision, Brussels, Belgium, 2002.
  3. S. Bundesrat, 814.12 Verordnung vom 1. Juli 1998 über Belastungen des Bodens (VBBo), Switzerland, 1998.
  4. MHSPE (Ministry of Housing, Spatial Planning and Environment), Netherlands: Circular on Target Values and Intervention Values for Soil Remediation, Ministry of Housing, Spatial Planning and Environment, Amsterdam, The Netherlands, 2000.
  5. BOE (Boletín Oficial del Estado), “Real Decreto 9/2005, de 14 de enero, por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados,” (BOE no. 15 de 18.01.05), pp. 1833–1843, 2005. Spain. (in Spanish).
  6. F. A. Swartjes, “Risk-based assessment of soil and groundwater quality in The Netherlands: standards and remediation urgency,” Risk Analysis, vol. 19, no. 6, pp. 1235–1249, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. EC (European Comission), Guide to Cost-Benetfit Analysis of Investment Projects: Evaluation Unit DG Regional Policy European Commission, Structural Fund-ERDF, Cohesion Fund and ISPA, 2002.
  8. EU (European Union), “Directive 2008/1/EC of the European Parlament and of the Council of 15 January 2008 concerning integrated pollution prevention and control,” (29-01-2008), 2008.
  9. UNEP (United Nations Environment Programme), “Freshwater management series no. 7 phytotechnologies: a technical approach in environmental management,” 2003, http://www.unep.or.jp/ietc/publications/freshwater/fms7/index.asp.
  10. ITRC (Interstate Technology and Regulatory Cooperation), “Phytotechnology technical and regulatory guidance and decision trees, Revised Technical/Regulatory Guidance Interstate Technology & Regulatory Council Phytotechnologies,” U.S. 2009, http://www.itrcweb.org/Documents/PHYTO-3.pdf.
  11. I. Raskin, “Phytoextraction: the use of plants to remove heavy metals from soils,” Environmental Science and Technology, vol. 29, no. 5, pp. 1232–1238, 1995.
  12. V. Dushenkov, P. B. A. Nanda-Kumar, H. Motto, and I. Raskin, “Rhizofiltration: the use of planst to remove havy metals from aqueous streams,” Environmental Science and Technology, vol. 29, pp. 1239–1245, 1995.
  13. I. Raskin, R. D. Smith, and D. E. Salt, “Phytoremediation of metals: using plants to remove pollutants from the environment,” Current Opinion in Biotechnology, vol. 8, no. 2, pp. 221–226, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. Salt, M. Blaylock, N. P. B. A. Kumar et al., “Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants,” Bio-technology, vol. 13, no. 5, pp. 468–474, 1995. View at Scopus
  15. U. Krämer, “Phytoremediation: novel approaches to cleaning up polluted soils,” Current Opinion in Biotechnology, vol. 16, no. 2, pp. 133–141, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. L. Arthur, P. J. Rice, P. J. Rice et al., “Phytoremediation—an overview,” Critical Reviews in Plant Sciences, vol. 24, no. 2, pp. 109–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. M. Dickinson, A. J. M. Baker, A. Doronila, S. Laidlaw, and R. D. Reeves, “Phytoremediation of inorganics: realism and synergies,” International Journal of Phytoremediation, vol. 11, no. 2, pp. 97–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. P. G. C. Marques, A. O. S. S. Rangel, and P. M. L. Castro, “Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology,” Critical Reviews in Environmental Science and Technology, vol. 39, no. 8, pp. 622–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Robinson, R. Schulin, B. Nowack et al., “Phytoremediation for the management of metal flux in contaminated sites,” Forest Snow and Landscape Research, vol. 80, no. 2, pp. 221–224, 2006. View at Scopus
  20. I. Alkorta, J. Hernández-Allica, J. M. Becerril, I. Amezaga, I. Albizu, and C. Garbisu, “Recent findings on the phytoremedation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic,” Reviews in Environmental Science and BioTechnology, vol. 3, pp. 71–90, 2004.
  21. J. L. Schnoor, “Phytoremediation of soil and groundwater,” Technology Evaluation Report TE-02-01, Ground Water Remediation Technologies Analysis Center (GWRTAC), Pittsburgh, Pa, USA, 2002.
  22. USEPA (United States Environmental Protection Agency), Introduction to Phytoremediation, EPA/600/R-99/107, Boston, Mass, USA, 2000.
  23. D. I. Kaplan, A. S. Knox, T. G. Hinton, R. R. Sharitz, B. P. Allen, and S. M. Serkiz, “Proof-of-concept of the phytoimmobilization technology for TNX outfall delta,” Final Report, Westinghouse Savannah River Company, Aiken, SC, USA, 2001.
  24. E. Manousaki, J. Kadukova, and N. Kalogerakis, “Phytoextraction and phytoexcretion of Cd and Pb by the salt cedar (Tamarix Smyrensis Bunge): a new combined phytoremediation process,” COST Action 859—Phytotechnologies in practice—biomass production, agricultural methods, legacy, legal and economic aspects October 14–17, Verneuil-en-Halatte, France, 2008.
  25. W. A. Peer, I. R. Baxter, E. L. Richards, J. L. Freeman, and A. S. Murphy, “Phytoremediation and hyperaccumulator plants,” Topics in Current Genetics, pp. 299–340, 2006.
  26. V. Campos and M. A. F. Pires, “Phytoremoval of arsenic from soil,” Communications in Soil Science and Plant Analysis, vol. 358, no. 15-16, pp. 2137–2146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. D. Parris, M. K. Banks, A. P. Schwab, and J. C. White, “Phyto-polishing of land-treated manufactured gas plant (MGP) soil,” Intertational Journal of Phytoremediation, vol. 6, p. 188, 2004.
  28. W. W. Wenzel, “Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils,” Plant and Soil, vol. 321, no. 1-2, pp. 385–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Gardea-Torresdey, G. De la Rosa, and J. R. Peralta-Videa, “Use of phytofiltration technologies in the removal of heavy metals: a review,” Pure and Applied Chemistry, vol. 76, no. 4, pp. 801–813, 2004. View at Scopus
  30. L. A. Newman and C. M. Reynolds, “Phytodegradation of organic compounds,” Current Opinion in Biotechnology, vol. 15, no. 3, pp. 225–230, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. B. H. Robinson, G. Bañuelos, H. M. Conesa, M. W. H. Evangelou, and R. Schulin, “The phytomanagement of trace elements in soil,” Critical Reviews in Plant Sciences, vol. 28, no. 4, pp. 240–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. J. Glass, “US and international markets for phytoremediation,” Tech. Rep., D. Glass Associates, Needham, Mass, USA, 1999.
  33. D. N. Dowling and S. L. Doty, “Improving phytoremediation through biotechnology,” Current Opinion in Biotechnology, vol. 20, no. 2, pp. 204–206, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. R. L. Chaney, M. Malik, Y. M. Li et al., “Phytoremediation of soil metals,” Current Opinion in Biotechnology, vol. 8, no. 3, pp. 279–284, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. M. Baker, S. P. McGrath, C. M. D. Sidoli, and R. D. Reeves, “The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants,” Resources, Conservation and Recycling, vol. 11, no. 1–4, pp. 41–49, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. S. P. McGrath and F. J. Zhao, “Phytoextraction of metals and metalloids from contaminated soils,” Current Opinion in Biotechnology, vol. 14, no. 3, pp. 277–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. M. Lasat, “Phytoextraction of toxic metals: a review of biological mechanisms,” Journal of Environmental Quality, vol. 31, no. 1, pp. 109–120, 2002. View at Scopus
  38. X. Yang, Y. Feng, Z. He, and P. J. Stoffella, “Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 4, pp. 339–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. R. Brooks, Ed., Plants that Hyperaccumulate Heavy Metals, CAB International Publishing, Oxford University Press, 1998.
  40. J. W. Huang and S. D. Cunningham, “Lead phytoextraction: species variation in lead uptake and translocation,” New Phytologist, vol. 134, no. 1, pp. 75–84, 1996. View at Scopus
  41. M. J. Blaylock, D. E. Salt, S. Dushenkov et al., “Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents,” Environmental Science and Technology, vol. 31, no. 3, pp. 860–865, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Nowack, R. Schulin, and B. H. Robinson, “Critical assessment of chelant-enhanced metal phytoextraction,” Environmental Science and Technology, vol. 40, no. 17, pp. 5225–5232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. W. H. Evangelou, M. Ebel, and A. Schaeffer, “Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity, and fate of chelating agents,” Chemosphere, vol. 68, no. 6, pp. 989–1003, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. G. Bañuelos, N. Terry, D. L. Leduc, E. A. H. Pilon-Smits, and B. Mackey, “Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment,” Environmental Science and Technology, vol. 39, no. 6, pp. 1771–1777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. Wolfe and D. J. Bjornstad, “Why would anyone object? An exploration of social aspects of phytoremediation acceptability,” Critical Reviews in Plant Sciences, vol. 21, no. 5, pp. 429–438, 2002. View at Scopus
  46. H. M. Conesa, A. Faz, and R. Arnaldos, “Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain),” Science of the Total Environment, vol. 36, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. H. M. Conesa, A. Faz, and R. Arnaldos, “Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain),” Chemosphere, vol. 66, no. 1, pp. 38–44, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. H. Wong, “Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils,” Chemosphere, vol. 50, no. 6, pp. 775–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. M. T. Domínguez, T. Marañón, J. M. Murillo, R. Schulin, and B. H. Robinson, “Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study,” Environmental Pollution, vol. 152, no. 1, pp. 50–59, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. I. Lewandowski, M. Londo, U. Schmidt , and A. P. Faaij, “Biomass production in multiple land use systems: categorization of feasible land use functions and their Quantification by the example of phytoremediation,” in Proceedings of the 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, pp. 54–57, Rome, Italy, May 2004.
  51. N. Witters, S. van Slycken, A. Ruttens et al., “Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: a sustainability assessment,” Bioenergy Research, vol. 2, no. 3, pp. 144–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Meers, S. van Slycken, K. Adriaensen et al., “The use of bio-energy crops (Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: a field experiment,” Chemosphere, vol. 78, no. 1, pp. 35–41, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. O. Mendez and R. M. Maier, “Phytoremediation of mine tailings in temperate and arid environments,” Reviews in Environmental Science and Biotechnology, vol. 7, no. 1, pp. 47–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. B. H. Robinson, S. Bischofberger, A. Stoll et al., “Plant uptake of trace elements on a Swiss military shooting range: uptake pathways and land management implications,” Environmental Pollution, vol. 153, no. 3, pp. 668–676, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. C. J. French, N. M. Dickinson, and P. D. Putwain, “Woody biomass phytoremediation of contaminated brownfield land,” Environmental Pollution, vol. 141, no. 3, pp. 387–395, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. I. Lewandowski, U. Schmidt, M. Londo, and A. Faaij, “The economic value of the phytoremediation function—assessed by the example of cadmium remediation by willow (Salix ssp),” Agricultural Systems, vol. 89, no. 1, pp. 68–89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Marmiroli, M. Marmiroli, and E. Maestri, “Phytoremediation and phytotechnologies: a review for the present and the future,” in Viable Methods of Soil and Water Pollution Monitoring, Protection and Remediation, I. Twadowska, M. M. Haggblom, and S. Stefaniak, Eds., vol. 69, pp. 403–416, NATO Science Series IV Earth and Environmental Sciences, 2006.
  58. P. J. White and M. R. Broadley, “Biofortifying crops with essential mineral elements,” Trends in Plant Science, vol. 10, no. 12, pp. 586–593, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. F. Branca and M. Ferrari, “Impact of micronutrient deficiencies on growth: the stunting syndrome,” Annals of Nutrition and Metabolism, vol. 46, no. 1, pp. 8–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. G. S. Bañuelos, “Phyto-products may be essential for sustainability and implementation of phytoremediation,” Environmental Pollution, vol. 144, no. 1, pp. 19–23, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. Qaim, A. J. Stein, and J. V. Meenakshi, “Economics of biofortification,” Agricultural Economics, vol. 37, no. 1, pp. 119–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. D. N. Cox and K. Bastiaans, “Understanding Australian consumers' perceptions of selenium and motivations to consume selenium enriched foods,” Food Quality and Preference, vol. 18, no. 1, pp. 66–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. F. J. Zhao and S. P. McGrath, “Biofortification and phytoremediation,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 373–380, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. L. A. Licht and J. G. Isebrands, “Linking phytoremediated pollutant removal to biomass economic opportunities,” Biomass and Bioenergy, vol. 28, no. 2, pp. 203–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. W. E. Tyner, “Policy update: cellulosic biofuels market uncertainties and government policy,” Biofuels, vol. 1, pp. 389–391, 2010.
  66. J. Lehmann, “Bio-energy in the black,” Frontiers in Ecology and the Environment, vol. 5, no. 7, pp. 381–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Schröder, R. Herzig, B. Bojinov et al., “Bioenergy to save the world: producing novel energy plants for growth on abandoned land,” Environmental Science and Pollution Research, vol. 15, no. 3, pp. 196–204, 2008. View at Publisher · View at Google Scholar
  68. B. Klasnja, S. Kopitovic, and S. Orlovic, “Wood and bark of some poplar and willow clones as fuelwood,” Biomass and Bioenergy, vol. 23, no. 6, pp. 427–432, 2002. View at Publisher · View at Google Scholar
  69. R. R. Brooks, M. F. Chambers, L. J. Nicks, and B. H. Robinson, “Phytomining,” Trends in Plant Science, vol. 3, no. 9, pp. 359–362, 1998. View at Publisher · View at Google Scholar
  70. R. L. Chaney, J. S. Angle, A. J. M. Baker, and Y.-M. Li, “Method for phytomining of nickel, cobalt, and other metals from soil,” U.S. Patent, no. 5,711,784, 1998.
  71. Y. M. Li, R. Chaney, E. Brewer et al., “Development of a technology for commercial phytoextraction of nickel: economic and technical considerations,” Plant and Soil, vol. 249, no. 1, pp. 107–115, 2003. View at Publisher · View at Google Scholar
  72. L. van Nevel, J. Mertens, K. Oorts, and K. Verheyen, “Phytoextraction of metals from soils: how far from practice?” Environmental Pollution, vol. 150, no. 1, pp. 34–40, 2007. View at Publisher · View at Google Scholar · View at PubMed
  73. R. C. González and M. C.A. González-Chávez, “Metal accumulation in wild plants surrounding mining wastes,” Environmental Pollution, vol. 144, no. 1, pp. 84–92, 2006. View at Publisher · View at Google Scholar · View at PubMed
  74. H. M. Conesa, B. H. Robinson, R. Schulin, and B. Nowack, “Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions,” Environmental Pollution, vol. 145, no. 3, pp. 700–707, 2007. View at Publisher · View at Google Scholar · View at PubMed