About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 194845, 7 pages
http://dx.doi.org/10.1100/2012/194845
Clinical Study

The c.1460C>T Polymorphism of MAO-A Is Associated with the Risk of Depression in Postmenopausal Women

1Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Ul. Polna 33, 60-535 Poznan, Poland
2Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Ul. Szpitalna 27/33, 60-572 Poznan, Poland
3Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Ul. Święcickiego 6, 60-781 Poznan, Poland

Received 9 November 2011; Accepted 1 December 2011

Academic Editors: S. Mastana and J. H. Zhao

Copyright © 2012 R. Słopień et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. N. Young and M. Leyton, “The role of serotonin in human mood and social interaction: insight from altered tryptophan levels,” Pharmacology Biochemistry and Behavior, vol. 71, no. 4, pp. 857–865, 2002. View at Publisher · View at Google Scholar
  2. S. Y. Huang, W. W. Lin, F. J. Wan et al., “Monoamine oxidase-A polymorphisms might modify the association between the dopamine D2 receptor gene and alcohol dependence,” Journal of Psychiatry and Neuroscience, vol. 32, no. 3, pp. 185–192, 2007. View at Scopus
  3. H. S. Jørgensen, “Studies on the neuroendocrine role of serotonin,” Danish Medical Bulletin, vol. 54, no. 4, pp. 266–288, 2007. View at Scopus
  4. X. Ni, T. Sicard, N. Bulgin et al., “Monoamine oxidase A gene is associated with borderline personality disorder,” Psychiatric Genetics, vol. 17, no. 3, pp. 153–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. V. D. Khait, Y. Y. Huang, G. Zalsman et al., “Association of Serotonin 5-HT2A receptor binding and the T102C polymorphism in depressed and healthy caucasian subjects,” Neuropsychopharmacology, vol. 30, no. 1, pp. 166–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Zalsman, M. Patya, A. Frisch et al., “Association of polymorphisms of the serotonergic pathways with clinical traits of impulsive-aggression and suicidality in adolescents: a multi-center study,” World Journal of Biological Psychiatry, vol. 12, no. 1, pp. 33–41, 2011. View at Publisher · View at Google Scholar
  7. E. M. Peñas-Lledó, P. Dorado, M. C. Cáceres, A. de la Rubia, and A. Llerena, “Association between T102C and A-1438G polymorphisms in the serotonin receptor 2A (5-HT2A) gene and schizophrenia: relevance for treatment with antipsychotic drugs,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 7, pp. 835–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Y. Chen, P. Sham, E. Y. Chen et al., “No association between T102C polymorphism of serotonin-2A receptor gene and clinical phenotypes of Chinese schizophrenic patients,” Psychiatry Research, vol. 105, no. 3, pp. 175–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Y. Huang, M. A. Oquendo, J. M. Friedman et al., “Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism,” Neuropsychopharmacology, vol. 28, no. 1, pp. 163–169, 2003. View at Scopus
  10. C. Fehr, N. Grintschuk, A. Szegedi et al., “The HTR1B 861G>C receptor polymorphism among patients suffering from alcoholism, major depression, anxiety disorders and narcolepsy,” Psychiatry Research, vol. 97, no. 1, pp. 1–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Lerer, F. Macciardi, R. H. Segman et al., “Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder,” Molecular Psychiatry, vol. 6, no. 5, pp. 579–585, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Videtič, T. T. Peternelj, T. Zupanc, J. Balažic, and R. Komel, “Promoter and functional polymorphisms of HTR2C and suicide victims,” Genes, Brain and Behavior, vol. 8, no. 5, pp. 541–545, 2009. View at Publisher · View at Google Scholar
  13. D. J. Walther, J. U. Peter, S. Bashammakh et al., “Synthesis of serotonin by a second tryptophan hydroxylase isoform,” Science, vol. 299, no. 5603, p. 76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Bach-Mizrachi, M. D. Underwood, S. A. Kassir et al., “Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide,” Neuropsychopharmacology, vol. 31, no. 4, pp. 814–824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Haghighi, H. Bach-Mizrachi, Y. Y. Huang et al., “Genetic architecture of the human tryptophan hydroxylase 2 Gene: existence of neural isoforms and relevance for major depression,” Molecular Psychiatry, vol. 13, no. 8, pp. 813–820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Ke, Z. Y. Qi, Y. Ping, and C. Y. Ren, “Effect of SNP at position 40237 in exon 7 of the TPH2 gene on susceptibility to suicide,” Brain Research, vol. 1122, no. 1, pp. 24–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. Shih and R. F. Thompson, “Monoamine oxidase in neuropsychiatry and behavior,” The American Journal of Human Genetics, vol. 65, no. 3, pp. 593–598, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. B. H. Brummett, A. D. Krystal, I. C. Siegler et al., “Associations of a regulatory polymorphism of monoamine oxidase-A gene promoter (MAOA-uVNTR) with symptoms of depression and sleep quality,” Psychosomatic Medicine, vol. 69, no. 5, pp. 396–401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Li, C. Kang, H. Zhang et al., “Monoamine oxidase A gene polymorphism predicts adolescent outcome of attention-deficit/hyperactivity disorder,” American Journal of Medical Genetics B, vol. 144, no. 4, pp. 430–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Preisig, F. Bellivier, B. T. Fenton et al., “Association between bipolar disorder and monoarnine oxidase a gene polymorphisms: results of a multicenter study,” The American Journal of Psychiatry, vol. 157, no. 6, pp. 948–955, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Gutiérrez, B. Arias, C. Gastó et al., “Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders,” Psychiatric Genetics, vol. 14, no. 4, pp. 203–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. T. G. Schulze, D. J. Müller, H. Krauss et al., “Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder,” American Journal of Medical Genetics B, vol. 96, no. 6, pp. 801–803, 2000. View at Scopus
  23. L. Du, D. Bakish, A. Ravindran, and P. D. Hrdina, “MAO-A gene polymorphisms are associated with major depression and sleep disturbance in males,” NeuroReport, vol. 15, no. 13, pp. 2097–2101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. E. A. Tivol, C. Shalish, D. E. Schuback, Y. P. Hsu, and X. O. Breakefield, “Mutational analysis of the human MAOA gene,” American Journal of Medical Genetics C, vol. 67, no. 1, pp. 92–97, 1996. View at Scopus
  25. M. Karayiorgou, C. Sobin, M. L. Blundell et al., “Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder,” Biological Psychiatry, vol. 45, no. 9, pp. 1178–1189, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Camarena, C. Cruz, J. R. de la Fuente, and H. Nicolini, “A higher frequency of a low activity-related allele of the MAO-A gene in females with obsessive-compulsive disorder,” Psychiatric Genetics, vol. 8, no. 4, pp. 255–257, 1998. View at Scopus
  27. C. Lochner, S. M. Hemmings, C. J. Kinnear, et al., “Gender in obsessive-compulsive disorder: clinical and genetic findings,” European Neuropsychopharmacology, vol. 14, no. 2, pp. 105–113, 2004.
  28. G. S. Hotamisligil and X. O. Breakefield, “Human monoamine oxidase A gene determines levels of enzyme activity,” The American Journal of Human Genetics, vol. 49, no. 2, pp. 383–392, 1991. View at Scopus
  29. R. L. Sjöberg, F. Ducci, C. S. Barr et al., “A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior,” Neuropsychopharmacology, vol. 33, no. 2, pp. 425–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. L. Bethea, N. Z. Lu, C. Gundlah, and J. M. Streicher, “Diverse actions of ovarian steroids in the serotonin neural system,” Frontiers in Neuroendocrinology, vol. 23, no. 1, pp. 41–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. B. de Lignieres and M. Vincens, “Differential effects of exogenous oestradiol and progesterone on mood in post-menopausal women: individual dose/effect relationship,” Maturitas, vol. 4, no. 1, pp. 67–72, 1982. View at Scopus
  32. R. Słopien, K. Jasniewicz, B. Meczekalski, A. Warenik-Szymankiewicz, M. Lianeri, and P. P. Jagodziński, “Polymorphic variants of genes encoding MTHFR, MTR, and MTHFD1 and the risk of depression in postmenopausal women in Poland,” Maturitas, vol. 61, no. 3, pp. 252–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Deecher, T. H. Andree, D. Sloan, and L. E. Schechter, “From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes,” Psychoneuroendocrinology, vol. 33, no. 1, pp. 3–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Weber, S. Talmon, I. Schulze et al., “Running wheel activity is sensitive to acute treatment with selective inhibitors for either serotonin or norepinephrine reuptake,” Psychopharmacology, vol. 203, no. 4, pp. 753–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. B. Imwalle, J. A. Gustafsson, and E. F. Rissman, “Lack of functional estrogen receptor β influences anxiety behavior and serotonin content in female mice,” Physiology and Behavior, vol. 84, no. 1, pp. 157–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. B. J. Mickey, F. Ducci, C. A. Hodgkinson, S. A. Langenecker, D. Goldman, and J. K. Zubieta, “Monoamine oxidase A genotype predicts human serotonin 1A receptor availability in vivo,” Journal of Neuroscience, vol. 28, no. 44, pp. 11354–11359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. L. Klaiber, D. M. Broverman, W. Vogel, L. G. Peterson, and M. B. Snyder, “Relationships of serum estradiol levels, menopausal duration, and mood during hormonal replacement therapy,” Psychoneuroendocrinology, vol. 22, no. 7, pp. 549–558, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. D. P. Holschneider, T. Kumazawa, K. Chen, and J. C. Shih, “Tissue-specific effects of estrogen on monoamine oxidase A and B in the rat,” Life Sciences, vol. 63, no. 3, pp. 155–160, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Q. Ma, E. Violani, F. Villa, G. B. Picotti, and A. Maggi, “Estrogenic control of monoamine oxidase A activity in human neuroblastoma cells expressing physiological concentrations of estrogen receptor,” European Journal of Pharmacology, vol. 284, no. 1-2, pp. 171–176, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. J. H. Morrison, R. D. Brinton, P. J. Schmidt, and A. C. Gore, “Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women,” Journal of Neuroscience, vol. 26, no. 41, pp. 10332–10348, 2006. View at Publisher · View at Google Scholar · View at Scopus