About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 347597, 9 pages
http://dx.doi.org/10.1100/2012/347597
Research Article

A Study of Epstein-Barr Virus BRLF1 Activity in a Drosophila Model System

Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA

Received 21 October 2011; Accepted 6 December 2011

Academic Editors: I. R. Arkhipova, B. Harrach, and F. Meggetto

Copyright © 2012 Amy Adamson and Dennis LaJeunesse. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Thompson and R. Kurzrock, “Epstein-barr virus and cancer,” Clinical Cancer Research, vol. 10, no. 3, pp. 803–821, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Swenson, E. Holley-Guthrie, and S. C. Kenney, “Epstein-Barr virus immediate-early protein BRLF1 interacts with CBP, promoting enhanced BRLF1 transactivation,” Journal of Virology, vol. 75, no. 13, pp. 6228–6234, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. V. L. Zacny, J. Wilson, and J. S. Pagano, “The epstein-barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle,” Journal of Virology, vol. 72, no. 10, pp. 8043–8051, 1998. View at Scopus
  4. L. K. Chang, J. Y. Chung, Y. R. Hong, T. Ichimura, M. Nakao, and S. T. Liu, “Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1,” Nucleic Acids Research, vol. 33, no. 20, pp. 6528–6539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. L. K. Chang, S. T. Liu, C. W. Kuo et al., “Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM,” Journal of Molecular Biology, vol. 379, no. 2, pp. 231–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Swenson, A. E. Mauser, W. K. Kaufmann, and S. C. Kenney, “The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction,” Journal of Virology, vol. 73, no. 8, pp. 6540–6550, 1999. View at Scopus
  7. Y. L. Chen, Y. J. Chen, W. H. Tsai, Y. C. Ko, J. Y. Chen, and S. F. Lin, “The Epstein-Barr virus replication and transcription activator, Rta/BRLF1, induces cellular senescence in epithelial cells,” Cell Cycle, vol. 8, no. 1, pp. 58–65, 2009. View at Scopus
  8. G. L. Bentz, R. Liu, A. M. Hahn, J. Shackelford, and J. S. Pagano, “Epstein-Barr virus BRLF1 inhibits transcription of IRF3 and IRF7 and suppresses induction of interferon-β,” Virology, vol. 402, no. 1, pp. 121–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Adamson, N. Wright, and D. R. LaJeunesse, “Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein,” Genetics, vol. 171, no. 3, pp. 1125–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. I. K. Hariharan and D. Bilder, “Regulation of imaginal disc growth by tumor-suppressor genes in Drosophila,” Annual Review of Genetics, vol. 40, pp. 335–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Rebay, R. G. Fehon, and S. Artavanis-Tsakonas, “Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor,” Cell, vol. 74, no. 2, pp. 319–329, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Wolff, “Histological techniques for the Drosophila eye, part I: larva and pupa,” in Drosophila Protocols, W. Sullivan, M. Ashburner, and R. S. Hawley, Eds., pp. 201–227, Cold Spring Harbor Press, New York, NY, USA, 2000.
  13. B. A. Hay, T. Wolff, and G. M. Rubin, “Expression of baculovirus P35 prevents cell death in Drosophila,” Development, vol. 120, no. 8, pp. 2121–2129, 1994. View at Scopus
  14. E. Kieff and A. B. Rickinson, “Epstein-Barr virus and its replication,” in Field's Virology, D. M. Knipe and P. M. Howley, Eds., pp. 2603–2654, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2007.
  15. H. J. Bellen, R. W. Levis, G. Liao et al., “The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes,” Genetics, vol. 167, no. 2, pp. 761–781, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. C. Murrin and J. N. Talbot, “RanBPM, a scaffolding protein in the immune and nervous systems,” Journal of Neuroimmune Pharmacology, vol. 2, no. 3, pp. 290–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Arama, D. Dickman, Z. Kimchie, A. Shearn, and Z. Lev, “Mutations in the β-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain,” Oncogene, vol. 19, no. 33, pp. 3706–3716, 2000. View at Scopus
  18. H. Stenmark and V. M. Olkkonen, “The Rab GTPase family,” Genome Biology, vol. 2, no. 5, article 3007, 2001. View at Scopus
  19. Y. Mamane, E. Petroulakis, O. LeBacquer, and N. Sonenberg, “mTOR, translation initiation and cancer,” Oncogene, vol. 25, no. 48, pp. 6416–6422, 2006. View at Publisher · View at Google Scholar · View at Scopus