About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 379360, 6 pages
http://dx.doi.org/10.1100/2012/379360
Research Article

Antioxidant Effect of MnTE-2-PyP on Lung in Asthma Mice Model

1Sector of Clinical Immunology and Allergology, Pelven Medical University, 5800 Pleven, Bulgaria
2Sector of Disaster Medicine, Pelven Medical University, 5800 Pleven, Bulgaria
3Sector of Clinical and Experimental Pharmacology, Pelven Medical University, 5800 Pleven, Bulgaria

Received 20 October 2011; Accepted 28 December 2011

Academic Editors: R. Álvarez-Sala and F. Arancibia

Copyright © 2012 Lyudmil Terziev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Fanta, “Drug therapy: asthma,” New England Journal of Medicine, vol. 360, no. 10, pp. 1002–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Hemachandra Reddy, “Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics,” Pharmaceuticals, vol. 4, no. 3, pp. 429–456, 2011. View at Publisher · View at Google Scholar
  3. S. T. Holgate, H. S. Arshad, G. C. Roberts, P. H. Howarth, P. Thurner, and D. E. Davies, “A new look at the pathogenesis of asthma,” Clinical Science, vol. 118, no. 7, pp. 439–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. S. Cho and H. B. Moon, “The role of oxidative stress in the pathogenesis of asthma,” Allergy, Asthma and Immunology Research, vol. 2, no. 3, pp. 183–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Rahman and W. MacNee, “Role of oxidants/antioxidants in smoking-induced lung diseases,” Free Radical Biology and Medicine, vol. 21, no. 5, pp. 669–681, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Riedl and A. E. Nel, “Importance of oxidative stress in the pathogenesis and treatment of asthma,” Current Opinion in Allergy and Clinical Immunology, vol. 8, no. 1, pp. 49–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Sugiura and M. Ichinose, “Oxidative and nitrative stress in bronchial asthma,” Antioxidants and Redox Signaling, vol. 10, no. 4, pp. 785–797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Kirkham and I. Rahman, “Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy,” Pharmacology and Therapeutics, vol. 111, no. 2, pp. 476–494, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. C. Gutteridge and B. Halliwell, “Free radicals and antioxidants in the year 2000. A historical look to the future,” Annals of the New York Academy of Sciences, vol. 899, pp. 136–147, 2000. View at Scopus
  10. A. Nadeem, A. Masood, and N. Siddiqui, “Oxidant-antioxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options,” Therapeutic Advances in Respiratory Disease, vol. 2, no. 4, pp. 215–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Y. Li, C. Pedersen, B. J. Day, and M. Patel, “Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation,” Journal of Neurochemistry, vol. 78, no. 4, pp. 746–755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Spasojević, Y. Chen, T. J. Noel et al., “Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria,” Free Radical Biology and Medicine, vol. 42, no. 8, pp. 1193–1200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Maral, K. Puget, and H. Michelson, “Comparative study of SOD, catalase and GSH-Px levels in erythrocytes of different animals,” Biochemical and Biophysical Research Communications, vol. 77, pp. 1532–1535, 1977.
  14. M. A. Koroliuk, L. I. Ivanova, I. G. Maĭorova, and V. E. Tokarev, “A method of determining catalase activity,” Laboratornoe delo, no. 1, pp. 16–19, 1988 (Russian).
  15. I. A. Pereslegina, “The activity of antioxidant enzymes in the saliva of normal children,” Laboratornoe Delo, no. 11, pp. 20–23, 1989. View at Scopus
  16. A. J. DeLucia, M. G. Mustafa, M. Z. Hussain, and C. E. Cross, “Ozone interaction with rodent lung—III. Oxidation of reduced glutathione and formation of mixed disulfides between protein and nonprotein sulfhydryls,” Journal of Clinical Investigation, vol. 55, no. 4, pp. 794–802, 1975. View at Scopus
  17. R. Dworski, L. Jackson Roberts, J. J. Murray, J. D. Morrow, T. V. Hartert, and J. R. Sheller, “Assessment of oxidant stress in allergic asthma by measurement of the major urinary metabolite of F2-isoprostane, 15-F2t-IsoP (8-iso-PGF2α),” Clinical and Experimental Allergy, vol. 31, no. 3, pp. 387–390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. B. I. A. Varshavskii, G. V. Trubnikov, L. P. Galaktipmpva, et al., “Oxidant-antioxidant status of patients with bronchial asthma during inhalation and systemic glucocorticoid therapy,” Terapevticheskii Arkhiv, vol. 75, pp. 21–24, 2003 (Russian).
  19. S. A. A. Comhair, P. R. Bhathena, R. A. Dweik, M. Kavuru, and S. C. Erzurum, “Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response,” Lancet, vol. 355, no. 9204, p. 624, 2000. View at Scopus
  20. S. A. A. Comhair, K. S. Ricci, M. Arroliga et al., “Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 3, pp. 306–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. M. F. Liao, C. C. Chen, and M. H. Hsu, “Evaluation of the serum antioxidant status in asthmatic children,” Acta Paediatrica Taiwanica, vol. 45, no. 4, pp. 213–217, 2004. View at Scopus
  22. I. Batinić-Haberle, J. S. Rebouças, and I. Spasojević, “Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential,” Antioxidants and Redox Signaling, vol. 13, no. 6, pp. 877–918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. DeFreitas-Silva, J. S. Rebouças, I. Spasojević, L. Benov, Y. M. Idemori, and I. Batinić-Haberle, “SOD-like activity of Mn(II) β-octabromo-meso-tetrakis(N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself,” Archives of Biochemistry and Biophysics, vol. 477, no. 1, pp. 105–112, 2008. View at Publisher · View at Google Scholar
  24. M. Patel and B. J. Day, “Metalloporphyrin class of therapeutic catalytic antioxidants,” Trends in Pharmacological Sciences, vol. 20, no. 9, pp. 359–364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. B. J. Day, “Catalytic antioxidants: a radical approach to new therapeutics,” Drug Discovery Today, vol. 9, no. 13, pp. 557–566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Spasojević, Y. Chen, T. J. Noel et al., “Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria,” Free Radical Biology and Medicine, vol. 42, no. 8, pp. 1193–1200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Ferrer-Sueta, L. Hannibal, I. Batinic-Haberle, and R. Radi, “Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: a catalytic cycle for the reduction of peroxynitrite,” Free Radical Biology and Medicine, vol. 41, no. 3, pp. 503–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Ferrer-Sueta, I. Batinić-Haberle, I. Spasojević, I. Fridovich, and R. Radi, “Catalytic scavenging of peroxynitrite by isomeric Mn(III) N- methylpyridylporphyrins in the presence of reductants,” Chemical Research in Toxicology, vol. 12, no. 5, pp. 442–449, 1999. View at Publisher · View at Google Scholar
  29. E. D. Coulter, J. P. Emerson, D. M. Kurtz, and D. E. Cabelli, “Superoxide reactivity of rubredoxin oxidoreductase (desulfoferrodoxin) from Desulfovibrio vulgaris: a pulse radiolysis study [25],” Journal of the American Chemical Society, vol. 122, no. 46, pp. 11555–11556, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Batinić-Haberle, I. Spasojević, P. Hambright, L. Benov, A. L. Crumbliss, and I. Fridovich, “The relationship between redox potentials, proton dissociation constants of pyrrolic nitrogenes, and in vitro and in vivo superoxide dismutase activities of mamganese(III) and iron(III) cationic and anionic porphyrins,” Inorganic Chemistry, vol. 38, pp. 4011–4022, 1999.
  31. I. L. Jackson, L. Chen, I. Batinic-Haberle, and Z. Vujaskovic, “Superoxide dismutase mimetic reduces hypoxia-induced O2-, TGF-β, and VEGF production by macrophages,” Free Radical Research, vol. 41, no. 1, pp. 8–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. B. J. Moeller, I. Batinic-Haberle, I. Spasojevic et al., “A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 2, pp. 545–552, 2005. View at Publisher · View at Google Scholar
  33. B. Gauter-Fleckenstein, K. Fleckenstein, K. Owzar et al., “Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage,” Free Radical Biology and Medicine, vol. 48, no. 8, pp. 1034–1043, 2010. View at Publisher · View at Google Scholar
  34. D. Salvemini, D. P. Riley, and S. Cuzzocrea, “SOD mimetics are coming of age,” Nature Reviews Drug Discovery, vol. 1, no. 5, pp. 367–374, 2002. View at Scopus
  35. G. Burkhard Mackensen, M. Patel, H. Sheng et al., “Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant,” Journal of Neuroscience, vol. 21, no. 13, pp. 4582–4592, 2001. View at Scopus
  36. H. Sheng, I. Spasojevic, D. S. Warner, and I. Batinic-Haberle, “Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy,” Neuroscience Letters, vol. 366, no. 2, pp. 220–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. R. Golden and M. Patel, “Catalytic antioxidants and neurodegeneration,” Antioxidants and Redox Signaling, vol. 11, no. 3, pp. 555–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Sompol, W. Ittarat, J. Tangpong et al., “A neuronal model of Alzheimer's disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury,” Neuroscience, vol. 153, no. 1, pp. 120–130, 2008. View at Publisher · View at Google Scholar
  39. J. D. Piganelli, S. C. Flores, C. Cruz et al., “A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone,” Diabetes, vol. 51, no. 2, pp. 347–355, 2002. View at Scopus
  40. Y. Zhao, L. Chaiswing, T. D. Oberley et al., “A mechanism-based antioxidant approach for the reduction of skin carcinogenesis,” Cancer Research, vol. 65, no. 4, pp. 1401–1405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Y. Makinde, X. Luo-Owen, A. Rizvi et al., “Effect of a metalloporphyrin antioxidant (MnTE-2-PyP) on the response of a mouse prostate cancer model to radiation,” Anticancer Research, vol. 29, no. 1, pp. 107–118, 2009. View at Scopus
  42. H. Saba, I. Batinic-Haberle, S. Munusamy et al., “Manganese porphyrin reduces renal injury and mitochondrial damage during ischemia/reperfusion,” Free Radical Biology and Medicine, vol. 42, no. 10, pp. 1571–1578, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. T. J. Wu, N. H. Khoo, F. Zhou, B. J. Day, and D. A. Parks, “Decreased hepatic ischemia-reperfusion injury by manganese-porphyrin complexes,” Free Radical Research, vol. 41, no. 2, pp. 127–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Y. L. Chang, M. Subramaniam, B. A. Yoder et al., “A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 1, pp. 57–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Y. Chang and J. D. Crapo, “Inhibition of airway inflammation and hyperreactivity by a catalytic antioxidant,” Chest, vol. 123, no. 3, p. 446, 2003. View at Scopus
  46. L. Y. Chang and J. D. Crapo, “Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic,” Free Radical Biology and Medicine, vol. 33, no. 3, pp. 379–386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. B. J. Day, “Antioxidants as potential therapeutics for lung fibrosis,” Antioxidants and Redox Signaling, vol. 10, no. 2, pp. 355–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Z. Vujaskovic, I. Batinic-Haberle, Z. N. Rabbani et al., “A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury,” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 857–863, 2002. View at Publisher · View at Google Scholar
  49. N. Nin, A. Cassina, J. Boggia et al., “Septic diaphragmatic dysfunction is prevented by Mn(III)porphyrin therapy and inducible nitric oxide synthase inhibition,” Intensive Care Medicine, vol. 30, no. 12, pp. 2271–2278, 2004. View at Publisher · View at Google Scholar · View at Scopus