About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 405675, 11 pages
http://dx.doi.org/10.1100/2012/405675
Research Article

The Interdependence between Rainfall and Temperature: Copula Analyses

1Centre for Environmental and Climate Research (CEC), Lund University, Lund S-22362, Sweden
2AgriFood Economics Centre, Department of Economics, Swedish University of Agricultural Sciences, Lund S-22007, Sweden

Received 17 August 2012; Accepted 9 October 2012

Academic Editors: G. O. Thomas and C. Varotsos

Copyright © 2012 Rong-Gang Cong and Mark Brady. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Black and S. R. Thompson, “Some evidence on weather-crop-yield interaction,” American Journal of Agricultural Economics, vol. 60, no. 3, pp. 540–543, 1978.
  2. V. A. Alexandrov and G. Hoogenboom, “The impact of climate variability and change on crop yield in Bulgaria,” Agricultural and Forest Meteorology, vol. 104, no. 4, pp. 315–327, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Chloupek, P. Hrstkova, and P. Schweigert, “Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries,” Field Crops Research, vol. 85, no. 2-3, pp. 167–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Vergara, G. Zuba, T. Doggett, and J. Seaquist, “Modeling the potential impact of catastrophic weather on crop insurance industry portfolio losses,” American Journal of Agricultural Economics, vol. 90, no. 5, pp. 1256–1262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. W. Jones, J. W. Hansen, F. S. Royce, and C. D. Messina, “Potential benefits of climate forecasting to agriculture,” Agriculture, Ecosystems and Environment, vol. 82, no. 1–3, pp. 169–184, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. E. C. A. Runge, “Effects of rainfall and temperature interactions during the growing season on corn yield,” Agronomy Journal, vol. 60, no. 5, pp. 503–507, 1968.
  7. P. E. Abbate, J. L. Dardanelli, M. G. Cantarero, M. Maturano, R. J. M. Melchiori, and E. E. Suero, “Climatic and water availability effects on water-use efficiency in wheat,” Crop Science, vol. 44, no. 2, pp. 474–483, 2004. View at Scopus
  8. D. F. Calderini, L. G. Abeledo, R. Savin, and G. A. Slafer, “Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat,” Journal of Agricultural Science, vol. 132, no. 4, pp. 453–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Medori, L. Michelini, I. Nogues, F. Loreto, and C. Calfapietra, “The impact of root temperature on photosynthesis and isoprene emission in three different plant species,” The Scientific World Journal, vol. 2012, Article ID 525827, 10 pages, 2012.
  10. P. Cantelaube and J. M. Terres, “Seasonal weather forecasts for crop yield modelling in Europe,” Tellus A, vol. 57, no. 3, pp. 476–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. E. Olesen and M. Bindi, “Consequences of climate change for European agricultural productivity, land use and policy,” European Journal of Agronomy, vol. 16, no. 4, pp. 239–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Erskine and F. El Ashkar, “Rainfall and temperature effects on lentil (Lens culinaris) seed yield in Mediterranean environments,” Journal of Agricultural Science, vol. 121, no. 3, pp. 347–354, 1993. View at Scopus
  13. D. B. Lobell, K. N. Cahill, and C. B. Field, “Historical effects of temperature and precipitation on California crop yields,” Climatic Change, vol. 81, no. 2, pp. 187–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. J. M. Cooper, J. Dimes, K. P. C. Rao, B. Shapiro, B. Shiferaw, and S. Twomlow, “Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change?” Agriculture, Ecosystems and Environment, vol. 126, no. 1-2, pp. 24–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Muchow, T. R. Sinclair, and J. M. Bennett, “Temperature and solar-radiation effects on potential maize yeld across locations,” Agronomy Journal, vol. 82, no. 2, pp. 338–343, 1990.
  16. D. B. Lobell and G. P. Asner, “Climate and management contributions to recent trends in U.S. Agricultural yields,” Science, vol. 299, no. 5609, p. 1032, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. B. Lobell and C. B. Field, “Global scale climate-crop yield relationships and the impacts of recent warming,” Environmental Research Letters, vol. 2, no. 1, Article ID 014002, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. K. Kaufmann and S. E. Snell, “A biophysical model of corn yield: integrating climatic and social Determinants,” American Journal of Agricultural Economics, vol. 79, no. 1, pp. 178–190, 1997. View at Scopus
  19. S. J. Riha, D. S. Wilks, and P. Simoens, “Impact of temperature and precipitation variability on crop model predictions,” Climatic Change, vol. 32, no. 3, pp. 293–311, 1996. View at Scopus
  20. J. Shukla and B. M. Misra, “Relationships between sea surface temperature and wind speed over the central Arabian Sea, and monsoon rainfall over India,” Monthly Weather Review, vol. 105, pp. 998–1002, 1977.
  21. A. F. Moise, R. A. Colman, and J. R. Brown, “Behind uncertainties in projections of Australian tropical climate: analysis of 19 CMIP3 models,” Journal of Geophysical Research, vol. 117, Article ID D10103, 2012.
  22. M. Tanarhte, P. Hadjinicolaou, and J. Lelieveld, “Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East,” Journal of Geophysical Research D, vol. 117, no. 12, Article ID D12102, 2012.
  23. R. F. Alder, G. Gu, J. J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin, “Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006),” Journal of Geophysical Research D, vol. 113, no. 22, Article ID D22104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Aldrian and R. Dwi Susanto, “Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature,” International Journal of Climatology, vol. 23, no. 12, pp. 1435–1452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Black, “The relationship between Indian Ocean sea-surface temperature and East African rainfall,” Philosophical Transactions of the Royal Society A, vol. 363, no. 1826, pp. 43–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Rajeevan, D. S. Pai, and V. Thapliyal, “Spatial and temporal relationships between global land surface air temperature anomalies and indian summer monsoon rainfall,” Meteorology and Atmospheric Physics, vol. 66, no. 3-4, pp. 157–171, 1998. View at Scopus
  27. Y. Huang, J. Cai, H. Yin, and M. Cai, “Correlation of precipitation to temperature variation in the Huanghe River (Yellow River) basin during 1957–2006,” Journal of Hydrology, vol. 372, no. 1–4, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. S. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, 2nd edition, 2005.
  29. A. AghaKouchak, A. Bárdossy, and E. Habib, “Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula,” Advances in Water Resources, vol. 33, no. 6, pp. 624–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Malevergne and D. Sornette, “Testing the Gaussian copula hypothesis for financial assets dependences,” Quantitative Finance, vol. 3, no. 4, pp. 231–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. Patton, “Copula-based models for financial time series,” in Handbook of Financial Time Series, pp. 767–785, Springer, Berlin, Germany, 2009.
  32. C. Genest, M. Gendron, and M. Bourdeau-Brien, “The advent of copulas in finance,” European Journal of Finance, vol. 15, no. 7-8, pp. 609–618, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. AghaKouchak, A. Bárdossy, and E. Habib, “Copula-based uncertainty modelling: application to multisensor precipitation estimates,” Hydrological Processes, vol. 24, no. 15, pp. 2111–2124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Serinaldi, “Analysis of inter-gauge dependence by Kendall's τK, upper tail dependence coefficient, and 2-copulas with application to rainfall fields,” Stochastic Environmental Research and Risk Assessment, vol. 22, no. 6, pp. 671–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Laux, S. Vogl, W. Qiu, H. R. Knoche, and H. Kunstmann, “Copula-based statistical refinement of precipitation in RCM simulations over complex terrain,” Hydrology and Earth System Sciences, vol. 15, no. 7, pp. 2401–2419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Laux, S. Wagner, A. Wagner, J. Jacobeit, A. Bárdossy, and H. Kunstmann, “Modelling daily precipitation features in the Volta Basin of West Africa,” International Journal of Climatology, vol. 29, no. 7, pp. 937–954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. C. Favre, S. E. Adlouni, L. Perreault, N. Thiémonge, and B. Bobée, “Multivariate hydrological frequency analysis using copulas,” Water Resources Research, vol. 40, no. 1, pp. 1–12, 2004. View at Scopus
  38. J. T. Shiau, S. Feng, and S. Nadarajah, “Assessment of hydrological droughts for the Yellow River, China, using copulas,” Hydrological Processes, vol. 21, no. 16, pp. 2157–2163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Schölzel and P. Friederichs, “Multivariate non-normally distributed random variables in climate research—introduction to the copula approach,” Nonlinear Processes in Geophysics, vol. 15, no. 5, pp. 761–772, 2008. View at Scopus
  40. D. J. Dupuis, “Using copulas in hydrology: benefits, cautions, and issues,” Journal of Hydrologic Engineering, vol. 12, no. 4, pp. 381–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Huang and H. M. Van Den Dool, “Monthly precipitation-temperature relations and temperature prediction over the United States,” Journal of Climate, vol. 6, no. 6, pp. 1111–1132, 1993. View at Scopus
  42. A. Sklar, “Random variables, joint distribution functions, and copulas,” Kybernetika, vol. 9, no. 6, pp. 449–460, 1973.
  43. H. Joe, Multivariate Models and Dependence Concepts, Chapman and Hall, London, UK, 1997.
  44. R. Nelsen, An Introduction to Copulas, Springer, New York, NY, USA, 1999.
  45. H. B. Fang, K. T. Fang, and S. Kotz, “The meta-elliptical distributions with given marginals,” Journal of Multivariate Analysis, vol. 82, no. 1, pp. 1–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Gregoire, C. Genest, and M. Gendron, “Using copulas to model price dependence in energy markets,” Energy Risk, vol. 5, pp. 58–64, 2008.
  47. E. Kole, K. Koedijk, and M. Verbeek, “Selecting copulas for risk management,” Journal of Banking and Finance, vol. 31, no. 8, pp. 2405–2423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, vol. AC-19, no. 6, pp. 716–723, 1974. View at Scopus
  49. G. E. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, vol. 6, no. 2, pp. 461–464.
  50. S. T. Katircioglu, “Research Methods In Banking And Finance,” http://www.emu.edu.tr/salihk/courses/bnfn504/chp-11.pdf.
  51. T. W. Kim and H. Ahn, “Spatial rainfall model using a pattern classifier for estimating missing daily rainfall data,” Stochastic Environmental Research and Risk Assessment, vol. 23, no. 3, pp. 367–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. F. E. Benth and J. Šaltyte-Benth, “Stochastic modelling of temperature variations with a view towards weather derivatives,” Applied Mathematical Finance, vol. 12, no. 1, pp. 53–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in time series models,” Biometrika, vol. 65, no. 2, pp. 297–303, 1978. View at Scopus
  54. M. J. Manton, P. M. Della-Marta, M. R. Haylock et al., “Trends in extreme daily rainfall and temperature in southeast Asia and the south Pacific: 1961–1998,” International Journal of Climatology, vol. 21, no. 3, pp. 269–284, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Joe and J. J. Xu, The Estimation Method of Inference Function for Margins for Multivariate Models, Department of Statistics, University of British Columbia, 1996.