About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 412580, 11 pages
http://dx.doi.org/10.1100/2012/412580
Review Article

SPECT and PET Imaging of Meningiomas

1Nuclear Medicine Department, University Hospital of Larissa, Mezourlo, 41110 Larissa, Greece
2Nuclear Medicine Department, “Alexandra” University Hospital, Vas. Sofias 80, 11528 Athens, Greece
3Nuclear Medicine Department, NIMTS Hospital, Monis Petraki 10-12, 11521 Athens, Greece

Received 9 January 2012; Accepted 26 January 2012

Academic Editor: Tullio Florio

Copyright © 2012 Varvara Valotassiou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Weber, K. O. Lovblad, and L. Rogers, “New pathology classification, imagery techniques and prospective trials for meningiomas: the future looks bright,” Current Opinion in Neurology, vol. 23, no. 6, pp. 563–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Mawrin and A. Perry, “Pathological classification and molecular genetics of meningiomas,” Journal of Neuro-Oncology, vol. 99, no. 3, pp. 379–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. B. Claus, M. L. Bondy, J. M. Schildkraut, J. L. Wiemels, M. Wrensch, and P. M. Black, “Epidemiology of intracranial meningioma,” Neurosurgery, vol. 57, no. 6, pp. 1088–1095, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. N. Louis, H. Ohgaki, O. D. Wiestler et al., “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Perry, D. N. Louis, B. W. Scheithauer, H. Budka, and A. von Deimling, “Meningiomas,” in World Health Organization Classification of Tumours of the Central Nervous System, D. N. Louis, H. Ohgaki, O. D. Wiestler, and W. K. Cavenee, Eds., vol. 1, pp. 164–172, IARC Press, Lyon, France, 4th edition, 2007.
  6. E. Lusis and D. H. Gutmann, “Meningioma: an update,” Current Opinion in Neurology, vol. 17, no. 6, pp. 687–692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Marosi, M. Hassler, K. Roessler et al., “Meningioma,” Critical Reviews in Oncology/Hematology, vol. 67, no. 2, pp. 153–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Simpson, “The recurrence of intracranial meningiomas after surgical treatment,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 20, no. 1, pp. 22–39, 1957. View at Scopus
  9. J. Jääskelainen, “Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis,” Surgical Neurology, vol. 26, no. 5, pp. 461–469, 1986. View at Scopus
  10. D. Raghavan, M. L. Brecher, D. H. Johnson, N. J. Meropol, P. L. Moots, and P. G. Rose, Textbook of Uncommon Cancer, John Wiley & Sons, New York, NY, USA, 1999.
  11. F. Kayaselcuk, S. Zorludemir, N. Bal, B. Erdogan, S. Erdogan, and T. Erman, “The expression of survivin and Ki-67 in meningiomas: correlation with grade and clinical outcome,” Journal of Neuro-Oncology, vol. 67, no. 1-2, pp. 209–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Jaeckle, “Neuroimaging for central nervous system tumors,” Seminars in Oncology, vol. 18, no. 2, pp. 150–157, 1991. View at Scopus
  13. H. L. Atkins, T. F. Budinger, and E. Lebowitz, “Thallium 201 for medical use. Part 3: human distribution and physical imaging properties,” Journal of Nuclear Medicine, vol. 18, no. 2, pp. 133–140, 1977. View at Scopus
  14. N. Tonami, “Thallium-201 SPECT in the evaluation of gliomas,” Journal of Nuclear Medicine, vol. 34, no. 12, pp. 2089–2090, 1993. View at Scopus
  15. S. Jinnouchi, H. Hoshi, T. Ohnishi et al., “Thallium-201 SPECT for predicting histological types of meningiomas,” Journal of Nuclear Medicine, vol. 34, no. 12, pp. 2091–2094, 1993. View at Scopus
  16. E. Tedeschi, A. Soricelli, A. Brunetti et al., “Different thallium-201 single-photon emission tomographic patterns in benign and aggressive meningiomas,” European Journal of Nuclear Medicine, vol. 23, no. 11, pp. 1478–1484, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kinuya, M. Ohashi, S. Itoh et al., “Thallium-201 brain SPECT to diagnose aggressiveness of meningiomas,” Annals of Nuclear Medicine, vol. 17, no. 6, pp. 463–467, 2003. View at Scopus
  18. T. Takeda, T. Nakano, K. Asano, N. Shimamura, and H. Ohkuma, “Usefulness of thallium-201 SPECT in the evaluation of tumor natures in intracranial meningiomas,” Neuroradiology, vol. 53, no. 11, pp. 867–873, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Bagni, L. Pinna, R. Tamarozzi et al., “SPET imaging of intracranial tumours with 99Tcm-sestamibi,” Nuclear Medicine Communications, vol. 16, no. 4, pp. 258–264, 1995. View at Scopus
  20. J. L. Moretti, N. Hauet, M. Caglar, O. Rebillard, and Z. Burak, “To use MIBI or not to use MIBI? That is the question when assessing tumour cells,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 7, pp. 836–842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. S. Petrovic, D. Grujicic, V. M. Artiko et al., “Investigation of blood perfusion and metabolic activity of brain tumours in adults by using 99mTc-methoxyisobutylisonitrile,” Nuclear Medicine Communications, vol. 31, no. 11, pp. 962–973, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Ak, Z. Gulbas, F. Altinel, and E. Vardareli, “Tc-99m MIBI uptake and its relation to the proliferative potential of brain tumors,” Clinical Nuclear Medicine, vol. 28, no. 1, pp. 29–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Cesani, R. Ernst, G. Storey, and J. Villanueva-Meyer, “Multicentric meningioma evaluation with Tc-99m MIBI SPECT, CT, and MRI,” Clinical Nuclear Medicine, vol. 20, no. 6, pp. 557–558, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kunishio, K. Morisaki, Y. Matsumoto, S. Nagao, and Y. Nishiyama, “Technetium-99m sestamibi single photon emission computed tomography findings correlated with P-glycoprotein expression, encoded by the multidrug resistance gene-1 messenger ribonucleic acid, in intracranial meningiomas,” Neurologia Medico-Chirurgica, vol. 43, no. 12, pp. 573–580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Spanu, F. Ginesu, P. Pirina et al., “The usefulness of 99mTc-tetrofosmin SPECT in the detection of intrathoracic malignant lesions,” International Journal of Oncology, vol. 22, no. 3, pp. 639–649, 2003. View at Scopus
  26. J. Y. Choi, S. E. Kim, H. J. Shin, B. T. Kim, and J. H. Kim, “Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-flourodeoxyglucose,” Journal of Neuro-Oncology, vol. 46, no. 1, pp. 63–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Fotopoulos, G. A. Alexiou, A. Goussia et al., “99mTc-Tetrofosmin brain SPECT in the assessment of meningiomas—correlation with histological grade and proliferation index,” Journal of Neuro-Oncology, vol. 89, no. 2, pp. 225–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. A. Alexiou, G. Vartholomatos, S. Tsiouris et al., “Evaluation of meningioma aggressiveness by 99mTc-Tetrofosmin SPECT,” Clinical Neurology and Neurosurgery, vol. 110, no. 7, pp. 645–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. H. Bohuslavizki, “Somatostatin receptor imaging: current status and future perspectives,” Journal of Nuclear Medicine, vol. 42, no. 7, pp. 1057–1058, 2001. View at Scopus
  30. J. Epelbaum, “Somatostatin in the central nervous system: physiology and pathological modifications,” Progress in Neurobiology, vol. 27, no. 1, pp. 63–100, 1986. View at Scopus
  31. J. C. Reubi, L. Kvols, E. Krenning, and S. W. J. Lamberts, “Distribution of somatostatin receptors in normal and tumor tissue,” Metabolism, vol. 39, supplement 2, no. 9, pp. 78–81, 1990. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Yamada, S. R. Post, K. Wang, H. S. Tager, G. I. Bell, and S. Seino, “Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 1, pp. 251–255, 1992. View at Scopus
  33. G. I. Bell and T. Reisine, “Molecular biology of somatostatin receptors,” Trends in Neurosciences, vol. 16, no. 1, pp. 34–38, 1993. View at Scopus
  34. M. John, W. Meyerhof, D. Richter et al., “Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2,” Gut, vol. 38, no. 1, pp. 33–39, 1996. View at Scopus
  35. J. Held-Feindt, B. Krisch, and R. Mentlein, “Molecular analysis of the somatostatin receptor subtype 2 in human glioma cells,” Molecular Brain Research, vol. 64, no. 1, pp. 101–107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Papotti, S. Croce, L. Macrì et al., “Correlative immunohistochemical and reverse transcriptase polymerase chain reaction analysis of somatostatin receptor type 2 in neuroendocrine tumors of the lung,” Diagnostic Molecular Pathology, vol. 9, no. 1, pp. 47–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Vanetti, G. Vogt, and V. Hollt, “The two isoforms of the mouse somatostatin receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization,” The FEBS Letters, vol. 331, no. 3, pp. 260–266, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Reubi, R. Maurer, and S. W. J. Lamberts, “Somatostatin binding sites in human leptomeninx,” Neuroscience Letters, vol. 70, no. 2, pp. 183–186, 1986. View at Scopus
  39. J. C. Reubi, R. Maurer, J. G. M. Klijn, et al., “High incidence of somatostatin receptors in human meningiomas: biochemical characterization,” Journal of Clinical Endocrinology and Metabolism, vol. 63, no. 2, pp. 433–438, 1986. View at Scopus
  40. W. H. Bakker, R. Albert, C. Bruns et al., “[111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: synthesis, radiolabeling and in vitro validation,” Life Sciences, vol. 49, no. 22, pp. 1583–1591, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. C. Patel and C. B. Srikant, “Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5),” Endocrinology, vol. 135, no. 6, pp. 2814–2817, 1994. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Schulz, S. U. Pauli, S. Schulz et al., “Immunohistochemical determination of five somatostatin receptors in meningioma reveals frequent overexpression of somatostatin receptor subtype sst2A,” Clinical Cancer Research, vol. 6, no. 5, pp. 1865–1874, 2000. View at Scopus
  43. A. R. Haldemann, H. Rösler, A. Barth et al., “Somatostatin receptor scintigraphy in central nervous system tumors: role of blood-brain barrier permeability,” Journal of Nuclear Medicine, vol. 36, no. 3, pp. 403–410, 1995. View at Scopus
  44. N. Nathoo, K. Ugokwe, A. S. Chang et al., “The role of 111indium-octreotide brain scintigraphy in the diagnosis of cranial, dural-based meningiomas,” Journal of Neuro-Oncology, vol. 81, no. 2, pp. 167–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Dutour, U. Kumar, R. Panetta et al., “Expression of somatostatin receptor subtypes in human brain tumors,” International Journal of Cancer, vol. 76, no. 5, pp. 620–627, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Schmidt, K. Scheidhauer, C. Luyken et al., “Somatostatin receptor imaging in intracranial tumours,” European Journal of Nuclear Medicine, vol. 25, no. 7, pp. 675–686, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Hildebrandt, K. Scheidhauer, C. Luyken et al., “High sensitivity of the in vivo detection of somatostatin receptors by 111Indium (DTPA-octreotide)-scintigraphy in meningioma patients,” Acta Neurochirurgica, vol. 126, no. 2–4, pp. 63–71, 1994. View at Scopus
  48. K. Scheidhauer, G. Hildebrandt, C. Luyken, K. Schomäcker, N. Klug, and H. Schicha, “Somatostatin receptor scintigraphy in brain tumors and pituitary tumors: first experiences,” Hormone and Metabolic Research, Supplement, no. 27, pp. 59–62, 1993. View at Scopus
  49. C. Luyken, G. Hildebrandt, K. Scheidhauer, B. Krisch, H. Schicha, and N. Klug, “111Indium (DTPA-octreotide) scintigraphy in patients with cerebral gliomas,” Acta Neurochirurgica, vol. 127, no. 1-2, pp. 60–64, 1994. View at Scopus
  50. E. P. Krenning, D. J. Kwekkeboom, W. H. Bakker et al., “Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients,” European Journal of Nuclear Medicine, vol. 20, no. 8, pp. 716–731, 1993. View at Scopus
  51. K. H. Bohuslavizki, W. Brenner, W. E. K. Braunsdorf et al., “Somatostatin receptor scintigraphy in the differential diagnosis of meningioma,” Nuclear Medicine Communications, vol. 17, no. 4, pp. 302–310, 1996. View at Scopus
  52. J. C. Reubi, W. Lang, R. Maurer, J. W. Koper, and S. W. J. Lamberts, “Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system,” Cancer Research, vol. 47, no. 21, pp. 5758–5764, 1987. View at Scopus
  53. A. Leondi, V. Valotassiou, J. Koutsikos, S. Tsiouris, E. Mainta, and C. Zerva, “Multiple meningiomas,” Clinical Nuclear Medicine, vol. 30, no. 5, pp. 361–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Saeed, M. W. T. Tanck, N. Freling, L. Baldeschi, M. P. Mourits, and R. J. Bennink, “Somatostatin receptor scintigraphy for optic nerve sheath meningiomas,” Ophthalmology, vol. 116, no. 8, pp. 1581–1586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Klutmann, K. H. Bohuslavizki, W. Brenner et al., “Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma,” Journal of Nuclear Medicine, vol. 39, no. 11, pp. 1913–1917, 1998. View at Scopus
  56. P. M. Black, “Brain tumors. Part 1,” The New England Journal of Medicine, vol. 324, no. 21, pp. 1471–1476, 1991. View at Scopus
  57. P. M. Black, “Brain tumors. Part 2,” The New England Journal of Medicine, vol. 324, no. 22, pp. 1555–1564, 1991. View at Scopus
  58. F. deMonte, “Surgery of skull base tumors,” Current Opinion in Oncology, vol. 7, no. 3, pp. 201–206, 1995. View at Scopus
  59. V. Barresi, C. Alafaci, F. Salpietro, and G. Tuccari, “Sstr2A immunohistochemical expression in human meningiomas: Is there a correlation with the histological grade, proliferation or microvessel density?” Oncology Reports, vol. 20, no. 3, pp. 485–492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. E. Bhim, H. Handmakcr, and N. A. Rinne, “The utility of a somatostatin-type receptor binding peptide radiopharmaceutical (P829) in the evaluation of solitary pulmonary nodules,” Chest, vol. 115, no. 1, pp. 224–232, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Virgolini, M. Leimer, H. Handmaker et al., “Somatostatin receptor subtype specificity and in viva binding of a novel tumor tracer, 99mTc-P829,” Cancer Research, vol. 58, no. 9, pp. 1850–1859, 1998. View at Scopus
  62. I. Virgolini, T. Traub, C. Novotny et al., “New trends in peptide receptor radioligands,” Quarterly Journal of Nuclear Medicine, vol. 45, no. 2, pp. 153–159, 2001. View at Scopus
  63. Committee for Proprietary Medicinal Products (CPMP), European Public Assessment Report 2065: Scientific Discussion of Depreotide (NeoSPECT): Clinical Pharmacology. London: The European Agency for the Evaluation of Medicinal Products (EAMA), pp. 11–14, 2000.
  64. E. P. Krenning, W. H. Bakker, P. P. M. Kooij et al., “Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide,” Journal of Nuclear Medicine, vol. 33, no. 5, pp. 652–658, 1992. View at Scopus
  65. D. Hellwig, S. Samnick, J. Reif et al., “Comparison of Tc-99m Depreotide and In-111 Octreotide in Recurrent Meningioma,” Clinical Nuclear Medicine, vol. 27, no. 11, pp. 781–784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. G. di Chiro, J. Hatazawa, D. A. Katz, H. V. Rizzoli, and D. J. de Michele, “Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study,” Radiology, vol. 164, no. 2, pp. 521–526, 1987.
  67. A. Sabet, H. Ahmadzadehfar, U. Herrlinger, W. Wilinek, H. J. Biersack, and S. Ezziddin, “Successful radiopeptide targeting of metastatic anaplastic meningioma: case report,” Radiation Oncology, vol. 6, no. 1, article 94, 2011. View at Publisher · View at Google Scholar
  68. J. W. Lee, K. W. Kang, S. H. Park et al., “18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 10, pp. 1574–1582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. U. Cremerius, E. Striepecke, W. Henn et al., “18FDG-PET in intracranial meningiomas versus grading, proliferation index, cellular density and cytogenetical analysis,” NuklearMedizin, vol. 33, no. 4, pp. 144–149, 1994. View at Scopus
  70. U. Cremerius, R. Bares, J. Weis et al., “Fasting improves discrimination of grade 1 and atypical or malignant meningioma in FDG-PET,” Journal of Nuclear Medicine, vol. 38, no. 1, pp. 26–30, 1997. View at Scopus
  71. D. Delbeke, C. Meyerowitz, R. L. Lapidus et al., “Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET,” Radiology, vol. 195, no. 1, pp. 47–52, 1995. View at Scopus
  72. R. S. Liu, C. P. Chang, W. Y. Guo et al., “1-11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of γ-knife radiosurgery,” Journal of Nuclear Medicine, vol. 51, no. 6, pp. 883–891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. T. S. Lee, S. H. Ahn, B. S. Moon et al., “Comparison of 18F-FDG, 18F-FET and 18F-FLT for differentiation between tumor and inflammation in rats,” Nuclear Medicine and Biology, vol. 36, no. 6, pp. 681–686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Caroli, C. Nanni, D. Rubello, A. Alavi, and S. Fanti, “Non-FDG PET in the practice of oncology,” Indian Journal of Cancer, vol. 47, no. 2, pp. 120–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Vaalburg, H. H. Coenen, C. Crouzel et al., “Amino acids for the measurement of protein synthesis in vivo by PET,” International Journal of Radiation Applications and Instrumentation B, vol. 19, no. 2, pp. 227–237, 1992. View at Publisher · View at Google Scholar · View at Scopus
  76. O. Gudjonsson, E. Blomquist, A. Lilja, H. Ericson, M. Bergström, and G. Nyberg, “Evaluation of the effect of high-energy proton irradiation treatment on meningiomas by means of 11C-L-methionine PET,” European Journal of Nuclear Medicine, vol. 27, no. 12, pp. 1793–1799, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. A. L. Grosu, W. A. Weber, S. T. Astner et al., “11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy,” International Journal of Radiation Oncology, Biology, Physics, vol. 66, no. 2, pp. 339–344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Nyberg, M. Bergström, P. Enblad, A. Lilja, C. Muhr, and B. Långström, “PET-methionine of skull base neuromas and meningiomas,” Acta Oto-Laryngologica, vol. 117, no. 4, pp. 482–489, 1997. View at Scopus
  79. T. Ogawa, A. Inugami, J. Hatazawa et al., “Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and L-methyl-11C-methionine,” American Journal of Neuroradiology, vol. 17, no. 2, pp. 345–353, 1996. View at Scopus
  80. S. T. Astner, M. Dobrei-Ciuchendea, M. Essler et al., “Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas,” International Journal of Radiation Oncology, Biology, Physics, vol. 72, no. 4, pp. 1161–1167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Arita, M. Kinoshita, Y. Okita, et al., “Clinical characteristics of meningiomas assessed by 11C-methionine and 18F-fluorodeoxyglucose positron-emission tomography,” Journal of Neuro-Oncology, vol. 107, no. 2, pp. 379–386, 2012.
  82. T. Iuchi, Y. Iwadate, H. Namba et al., “Glucose and methionine uptake and proliferative activity in meningiomas,” Neurological Research, vol. 21, no. 7, pp. 640–644, 1999. View at Scopus
  83. I. Rutten, J. E. Cabay, N. Withofs et al., “PET/CT of skull base meningiomas using 2-18F-fluoro-L-tyrosine: initial report,” Journal of Nuclear Medicine, vol. 48, no. 5, pp. 720–725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. C. Murphy, A. Kawashima, and P. J. Peller, “The utility of 11C-choline PET/CT for imaging prostate cancer: a pictorial guide,” American Journal of Roentgenology, vol. 196, no. 6, pp. 1390–1398, 2011. View at Publisher · View at Google Scholar
  85. T. Hara, N. Kosaka, N. Shinoura, and T. Kondo, “PET imaging of brain tumor with [methyl-11C]choline,” Journal of Nuclear Medicine, vol. 38, no. 6, pp. 842–847, 1997. View at Scopus
  86. R. Buhl, A. Nabavi, S. Wolff et al., “MR spectroscopy in patients with intracranial meningiomas,” Neurological Research, vol. 29, no. 1, pp. 43–46, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Fallanca, G. Giovacchini, M. Picchio, V. Bettinardi, C. Messa, and F. Fazio, “Incidental detection by [11C]choline PET/CT of meningiomas in prostate cancer patients,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 53, no. 4, pp. 417–421, 2009. View at Scopus
  88. G. Giovacchini, F. Fallanca, C. Landoni et al., “C-11 choline versus F-18 fluorodeoxyglucose for imaging meningiomas: an initial experience,” Clinical Nuclear Medicine, vol. 34, no. 1, pp. 7–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Y. Yu, M. Muzi, J. A. Hackenbracht et al., “C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy,” Clinical Nuclear Medicine, vol. 36, no. 3, pp. 192–198, 2011. View at Publisher · View at Google Scholar
  90. N. Salem, Y. Kuang, D. Corn, et al., “[(Methyl)1-11C]-acetate metabolism in hepatocellular carcinoma,” Molecular Imaging and Biology, vol. 13, no. 1, pp. 140–151, 2011.
  91. H. Nomori, H. Shibata, K. Uno et al., “11C-acetate can be used in place of 18f-fluorodeoxyglucose for positron emission tomography imaging of non-small cell lung cancer with higher sensitivity for well-differentiated adenocarcinoma,” Journal of Thoracic Oncology, vol. 3, no. 12, pp. 1427–1432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. R. S. Liu, C. P. Chang, L. S. Chu et al., “PET imaging of brain astrocytoma with 1-11C-acetate,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 4, pp. 420–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. S. H. Yeh, R. S. Liu, L. C. Wu, S. H. Yen, C. W. Chang, and K. Y. Chen, “11C-acetate clearance in nasopharyngeal carcinoma,” Nuclear Medicine Communications, vol. 20, no. 2, pp. 131–134, 1999. View at Scopus
  94. N. Oyama, H. Akino, H. Kanamaru et al., “11C-acetate PET imaging of prostate cancer,” Journal of Nuclear Medicine, vol. 43, no. 2, pp. 181–186, 2002. View at Scopus
  95. G. A. Dienel, D. Popp, P. D. Drew, K. Ball, A. Krisht, and N. F. Cruz, “Preferential labeling of glial and meningial brain tumors with [2-14C]acetate,” Journal of Nuclear Medicine, vol. 42, no. 8, pp. 1243–1250, 2001. View at Scopus
  96. K. G. Go, “The normal and pathological physiology of brain water,” Advances and Technical Standards in Neurosurgery, vol. 23, pp. 47–142, 1997. View at Scopus
  97. Z. Xiangsong, L. Changhong, C. Weian, and Z. Dong, “PET imaging of cerebral astrocytoma with 13N-ammonia,” Journal of Neuro-Oncology, vol. 78, no. 2, pp. 145–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. Z. Xiangsong and C. Weian, “Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with 13N-NH3 PET,” Journal of Neuro-Oncology, vol. 82, no. 3, pp. 305–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. Z. Xiangsong, S. Xingchong, Y. Chang, W. Xiaoyan, and C. Zhifeng, “13N-NH3 versus F-18 FDG in detection of intracranial meningioma: initial report,” Clinical Nuclear Medicine, vol. 36, no. 11, pp. 1003–1006, 2011. View at Publisher · View at Google Scholar
  100. A. Heppeler, S. Froidevaux, H. R. Mäcke et al., “Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy,” Chemistry A, vol. 5, no. 7, pp. 1974–1981, 1999. View at Scopus
  101. J. C. Reubi, J. C. Schär, B. Waser et al., “Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use,” European Journal of Nuclear Medicine, vol. 27, no. 3, pp. 273–282, 2000. View at Scopus
  102. M. Henze, J. Schuhmacher, P. Hipp et al., “PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-Octreotide: first results in patients with meningiomas,” Journal of Nuclear Medicine, vol. 42, no. 7, pp. 1053–1056, 2001. View at Scopus
  103. M. Henze, A. Dimitrakopoulou-Strauss, S. Milker-Zabel et al., “Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas,” Journal of Nuclear Medicine, vol. 46, no. 5, pp. 763–769, 2005. View at Scopus
  104. P. J. Derome, “Surgical management of tumours invading the skull base,” The Canadian Journal of Neurological Sciences, vol. 12, no. 4, pp. 345–347, 1985. View at Scopus
  105. G. Guiot and P. Derome, “Apropos of meningiomas “en plaque” of the pterion. Surgical treatment of hyperostotic osseous meningiomas,” Annales de Chirurgie, vol. 20, no. 19, pp. 1109–1127, 1966. View at Scopus
  106. B. Gehler, F. Paulsen, M. T. Oksüz et al., “[68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning,” Radiation Oncology, vol. 4, no. 1, article 56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Nyuyki, M. Plotkin, R. Graf et al., “Potential impact of 68Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 2, pp. 310–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Thorwarth, G. Henke, A. C. Müller et al., “Simultaneous 68Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience,” International Journal of Radiation Oncology, Biology, Physics, vol. 81, no. 1, pp. 277–283, 2011. View at Publisher · View at Google Scholar
  109. S. Milker-Zabel, A. Zabel-du Bois, M. Henze et al., “Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET,” International Journal of Radiation Oncology, Biology, Physics, vol. 65, no. 1, pp. 222–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. W. Becker, “Nuclear medicine goes therapy?” Nuklearmedizin, vol. 38, no. 2, pp. 3–5, 1999. View at Scopus
  111. S. M. Larson, J. Tjuvajev, and R. Blasberg, “Triumph over mischance: a role for nuclear medicine in gene therapy,” Journal of Nuclear Medicine, vol. 38, no. 8, pp. 1230–1233, 1997. View at Scopus