About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 471417, 10 pages
http://dx.doi.org/10.1100/2012/471417
Review Article

The Future of Butyric Acid in Industry

1School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
2New Renewable Energy Lab, SK Innovation Global Technology, Seoul, Republic of Korea
3Department of Applied Chemical Engineering, Hanyang University, Seoul, Republic of Korea

Received 31 October 2011; Accepted 11 January 2012

Academic Editors: S. Cuzzocrea and J. Sanchez

Copyright © 2012 Mohammed Dwidar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citations to this Article [24 citations]

The following is the list of published articles that have cited the current article.

  • Yu-Sin Jang, Hee Moon Woo, Jung Ae Im, In Ho Kim, and Sang Yup Lee, “Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid,” Applied Microbiology and Biotechnology, 2013. View at Publisher · View at Google Scholar
  • Marek Blahušiak, Štefan Schlosser, and Ján Marták, “Extraction of butyric acid with a solvent containing amonium ionic liquid,” Separation and Purification Technology, 2013. View at Publisher · View at Google Scholar
  • Adrie J. J. Straathof, “Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells,” Chemical Reviews, pp. 130829143637004, 2013. View at Publisher · View at Google Scholar
  • Jang-Mi Baek, Suman Mazumdar, Sang-Woo Lee, Moo-Young Jung, Jae-Hyung Lim, Sang-Woo Seo, Gyoo-Yeol Jung, and Min-Kyu Oh, “ Butyrate Production in Engineered Escherichia coli With Synthetic Scaffolds ,” Biotechnology and Bioengineering, 2013. View at Publisher · View at Google Scholar
  • Kyle A. Zingaro, Sergios A. Nicolaou, and Eleftherios T. Papoutsakis, “Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing,” Trends in Biotechnology, 2013. View at Publisher · View at Google Scholar
  • Mohammed Dwidar, Seil Kim, Byoung Seung Jeon, Youngsoon Um, Robert J. Mitchell, and Byoung-In Sang, “Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose,” Biotechnology for Biofuels, vol. 6, no. 1, 2013. View at Publisher · View at Google Scholar
  • Toshiyuki Ueki, Kelly P. Nevin, Trevor L. Woodard, and Derek R. Lovley, “Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii,” Mbio, vol. 5, no. 5, 2014. View at Publisher · View at Google Scholar
  • Binling Ai, Jianzheng Li, Xue Chi, Jia Meng, Ajay Kumar Jha, Chong Liu, and En Shi, “Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture,” Biotechnology and Bioprocess Engineering, vol. 19, no. 4, pp. 676–686, 2014. View at Publisher · View at Google Scholar
  • Kayhan Bayazıt, Aslı Gök, Hasan Uslu, and Ş. İsmail Kırbaşlar, “Phase Equilibria of (water + butyric acid+butyl acetate) ternary systems at different temperatures,” Fluid Phase Equilibria, 2014. View at Publisher · View at Google Scholar
  • Mukesh Saini, Zei Wen Wang, Chung-Jen Chiang, and Yun-Peng Chao, “ Metabolic Engineering of Escherichia coli for Production of Butyric Acid ,” Journal of Agricultural and Food Chemistry, pp. 140505143629009, 2014. View at Publisher · View at Google Scholar
  • Camilo S. López Garzón, and Adrie J.J. Straathof, “Recovery of carboxylic acids produced by fermentation,” Biotechnology Advances, 2014. View at Publisher · View at Google Scholar
  • Xiang Zhou, Shu-Yang Wang, Xi-Hong Lu, and Jian-Ping Liang, “Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum,” Bioresource Technology, 2014. View at Publisher · View at Google Scholar
  • Xiang Zhou, Xi-Hong Lu, Xue-Hu Li, Zhi-Jun Xin, Jia-Rong Xie, Mei-Rong Zhao, Liang Wang, Wen-Yue Du, and Jian-Ping Liang, “Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch,” Biotechnology for Biofuels, vol. 7, 2014. View at Publisher · View at Google Scholar
  • Chandresh Thakker, Irene Martínez, Wei Li, Ka-Yiu San, and George N. Bennett, “Metabolic engineering of carbon and redox flow in the production of small organic acids,” Journal of Industrial Microbiology & Biotechnology, 2014. View at Publisher · View at Google Scholar
  • Changhee Cho, Yu-Sin Jang, Hyeon Gi Moon, Joungmin Lee, and Sang Yup Lee, “Metabolic engineering of clostridia for the production of chemicals,” Biofuels, Bioproducts and Biorefining, 2014. View at Publisher · View at Google Scholar
  • Manolis N. Romanias, Vassileios C. Papadimitriou, and Panos Papagiannakopoulos, “ The Interaction of Propionic and Butyric Acids with Ice and HNO 3 -Doped Ice Surfaces at 195 - 212 K ,” The Journal of Physical Chemistry A, pp. 141110112921000, 2014. View at Publisher · View at Google Scholar
  • Le Yu, Mengmeng Xu, I-Ching Tang, and Shang-Tian Yang, “Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase,” Applied Microbiology and Biotechnology, 2015. View at Publisher · View at Google Scholar
  • Sara Ramió-Pujol, Ramon Ganigué, Lluís Bañeras, and Jesús Colprim, “Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7,” Bioresource Technology, 2015. View at Publisher · View at Google Scholar
  • Jin Huang, Hongliang Dai, Ren Yan, and Pu Wang, “ Butyric acid production from recycled waste paper by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor ,” Journal of Chemical Technology & Biotechnology, 2015. View at Publisher · View at Google Scholar
  • Marek Blahušiak, Štefan Schlosser, and Július Annus, “Separation of butyric acid in fixed bed column with solvent impregnated resin containing ammonium ionic liquid,” Reactive and Functional Polymers, vol. 87, pp. 29–36, 2015. View at Publisher · View at Google Scholar
  • Saurabh Jyoti Sarma, Vinayak Pachapur, Satinder Kaur Brar, Yann Le Bihan, and Gerardo Buelna, “Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 942–951, 2015. View at Publisher · View at Google Scholar
  • Xiaofen Li, Janis E. Swan, Giridhar R. Nair, and Alan G. Langdon, “Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose,” Biotechnology and Applied Biochemistry, 2015. View at Publisher · View at Google Scholar
  • G. N. Baroi, I. V. Skiadas, P. Westermann, and H. N. Gavala, “Continuous Fermentation of Wheat Straw Hydrolysate by Clostridium tyrobutyricum with In-Situ Acids Removal,” Waste and Biomass Valorization, 2015. View at Publisher · View at Google Scholar
  • R. Ganigue, S. Puig, P. Batlle-Vilanova, M. D. Balaguer, and J. Colprim, “Microbial electrosynthesis of butyrate from carbon dioxide,” Chemical Communications, vol. 51, no. 15, pp. 3235–3238, 2015. View at Publisher · View at Google Scholar