About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 471417, 10 pages
http://dx.doi.org/10.1100/2012/471417
Review Article

The Future of Butyric Acid in Industry

1School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
2New Renewable Energy Lab, SK Innovation Global Technology, Seoul, Republic of Korea
3Department of Applied Chemical Engineering, Hanyang University, Seoul, Republic of Korea

Received 31 October 2011; Accepted 11 January 2012

Academic Editors: S. Cuzzocrea and J. Sanchez

Copyright © 2012 Mohammed Dwidar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Demirbas, “Biofuels securing the planet's future energy needs,” Energy Conversion and Management, vol. 50, no. 9, pp. 2239–2249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ebert, “Biobutanol: the next big biofuel,” Biomass Magazine, 2008.
  3. D. Wu, H. Chen, L. Jiang, J. Cai, Z. Xu, and P. Cen, “Efficient separation of butyric acid by an aqueous two-phase system with calcium chloride,” Chinese Journal of Chemical Engineering, vol. 18, no. 4, pp. 533–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. X. Chen and T. R. Breitman, “Tributyrin: a prodrug of butyric acid for potential clinical application in differentiation therapy,” Cancer Research, vol. 54, no. 13, pp. 3494–3499, 1994. View at Scopus
  5. A. Rephaeli, R. Zhuk, and A. Nudelman, “Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications,” Drug Development Research, vol. 50, no. 3-4, pp. 379–391, 2000. View at Scopus
  6. H. M. Hamer, D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, and R. J. Brummer, “Review article: the role of butyrate on colonic function,” Alimentary Pharmacology and Therapeutics, vol. 27, no. 2, pp. 104–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Leavitt, J. C. Barrett, B. D. Crawford, and P. O. P. Ts'o, “Butyric acid suppression of the in vitro neoplastic state of Syrian hamster cells,” Nature, vol. 271, no. 5642, pp. 262–265, 1978. View at Scopus
  8. Y. Cao, H. Q. Li, and J. Zhang, “Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-Allyl-3-methylimidazolium chloride (AmimCl) ionic liquid,” Industrial & Engineering Chemistry Research, vol. 50, no. 13, pp. 7808–7814, 2011.
  9. C. Zhang, H. Yang, F. Yang, and Y. Ma, “Current progress on butyric acid production by fermentation,” Current Microbiology, vol. 59, no. 6, pp. 656–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. El-Shafee, G. R. Saad, and S. M. Fahmy, “Miscibility, crystallization and phase structure of poly(3-hydroxybutyrate)/cellulose acetate butyrate blends,” European Polymer Journal, vol. 37, no. 10, pp. 2091–2104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. W. Armstrong and H. Yamazaki, “Natural flavours production: a biotechnological approach,” Trends in Biotechnology, vol. 4, no. 10, pp. 264–267, 1986. View at Scopus
  12. C. Shu, J. Cai, L. Huang, X. Zhu, and Z. Xu, “Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth,” Journal of Molecular Catalysis B, vol. 72, no. 3-4, pp. 139–144, 2011. View at Publisher · View at Google Scholar
  13. R. Cascone, “Biobutanol—a replacement for bioethanol?” Chemical Engineering Progress, vol. 104, no. 8, pp. S4–S9, 2008. View at Scopus
  14. J. Zigova and E. SturdIk, “Advances in biotechnological production of butyric acid,” Journal of Industrial Microbiology and Biotechnology, vol. 24, no. 3, pp. 153–160, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Vandak, M. Tomaška, J. Zigova, and E. SturdIk, “Effect of growth supplements and whey pretreatment on butyric acid production by Clostridium butyricum,” World Journal of Microbiology & Biotechnology, vol. 11, no. 3, p. 363, 1995. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Zigova, E. SturdIk, D. Vandak, and S. Schlosser, “Butyric acid production by Clostridium butyricum with integrated extraction and pertraction,” Process Biochemistry, vol. 34, no. 8, pp. 835–843, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Q. He, Q. Kong, Q. H. Chen, and H. Ruan, “Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB,” Journal of Zhejiang University, vol. 6, no. 11, pp. 1076–1080, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Fayolle, R. Marchal, and D. Ballerini, “Effect of controlled substrate feeding on butyric acid production by Clostridium tyrobutyricum,” Journal of Industrial Microbiology, vol. 6, no. 3, pp. 179–183, 1990. View at Scopus
  19. J. H. Jo, D. S. Lee, J. Kim, and J. M. Park, “Effect of initial glucose concentrations on carbon and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1,” Journal of Microbiology and Biotechnology, vol. 19, no. 3, pp. 291–298, 2009. View at Publisher · View at Google Scholar
  20. L. Jiang, J. Wang, S. Liang, X. Wang, P. Cen, and Z. Xu, “Production of butyric acid from glucose and xylose with immobilized cells of clostridium tyrobutyricum in a fibrous-bed bioreactor,” Applied Biochemistry and Biotechnology, vol. 160, no. 2, pp. 350–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Liu, Y. Zhu, and S. T. Yang, “Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants,” Enzyme and Microbial Technology, vol. 38, no. 3-4, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. T. Wu and S. T. Yang, “Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum,” Biotechnology and Bioengineering, vol. 82, no. 1, pp. 93–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. Mitchell, J. S. Kim, B. S. Jeon, and B. I. Sang, “Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time,” Bioresource Technology, vol. 100, no. 21, pp. 5352–5355, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, “Butyric fermentation: metabolic behaviour and production performance of Clostridium tyrobutyricum in a continuous culture with cell recycle,” Applied Microbiology and Biotechnology, vol. 34, no. 2, pp. 172–177, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Canganella and J. Wiegel, “Continuous cultivation of Clostridium thermobutyricum in a rotary fermentor system,” Journal of Industrial Microbiology and Biotechnology, vol. 24, no. 1, pp. 7–13, 2000. View at Scopus
  26. M. P. Bryant and L. A. Burkey, “The characteristics of lactate-fermenting sporeforming anaerobes from silage,” Journal of Bacteriology, vol. 71, no. 1, pp. 43–46, 1956. View at Scopus
  27. T. Gibson, “Clostridia in Silage,” Journal of Applied Bacteriology, vol. 28, no. 1, pp. 56–62, 1965. View at Publisher · View at Google Scholar
  28. J. Wiegel, S. U. Kuk, and G. W. Kohring, “Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product,” International Journal of Systematic Bacteriology, vol. 39, no. 2, pp. 199–204, 1989. View at Scopus
  29. S. Alam, D. Stevens, and R. Bajpai, “Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii,” Journal of Industrial Microbiology, vol. 2, no. 6, pp. 359–364, 1988. View at Publisher · View at Google Scholar · View at Scopus
  30. G. B. Patel and B. J. Agnew, “Growth and butyric acid production by Clostridium pupuleti,” Archives of Microbiology, vol. 150, no. 3, pp. 267–271, 1988. View at Scopus
  31. J. Huang, J. Cai, J. Wang et al., “Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor,” Bioresource Technology, vol. 102, no. 4, pp. 3923–3926, 2011. View at Publisher · View at Google Scholar
  32. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, “Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum,” Applied Microbiology and Biotechnology, vol. 32, no. 4, pp. 387–392, 1990. View at Scopus
  33. W. Li, H. J. Han, and C. H. Zhang, “Continuous butyric acid production by corn stalk immobilized Clostridium thermobutyricum cells,” African Journal of Microbiology Research, vol. 5, no. 6, pp. 661–666, 2011.
  34. S. Saint-Amans, L. Girbal, J. Andrade, K. Ahrens, and P. Soucaille, “Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures,” Journal of Bacteriology, vol. 183, no. 5, pp. 1748–1754, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Huang, H. Liu, and Y. R. Gan, “Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass,” Biotechnology Advances, vol. 28, no. 5, pp. 651–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. G. Van Andel, G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure, “Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture,” Applied Microbiology and Biotechnology, vol. 23, no. 1, pp. 21–26, 1985. View at Scopus
  37. F. Canganella, S. U. Kuk, H. Morgan, and J. Wiegel, “Clostridium thermobutyricum: growth studies and stimulation of butyrate formation by acetate supplementation,” Microbiological Research, vol. 157, no. 2, pp. 149–156, 2002. View at Scopus
  38. D. Michel-Savin, R. Marchal, and J. P. Vandecasteele, “Butyrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition,” Applied Microbiology and Biotechnology, vol. 33, no. 2, pp. 127–131, 1990. View at Scopus
  39. C. K. Chen and H. P. Blaschek, “Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration,” Applied and Environmental Microbiology, vol. 65, no. 2, pp. 499–505, 1999. View at Scopus
  40. A. L. A. Soh, H. Ralambotiana, B. Ollivier, G. Prensier, E. Tine, and J. L. Garcia, “Clostridium thermopalmarium sp. nov., a moderately thermophilic butyrate-producing bacterium isolated from palm wine in Senegal,” Systematic and Applied Microbiology, vol. 14, no. 2, pp. 135–139, 1991. View at Scopus
  41. A. Geng, Y. He, C. Qian, X. Yan, and Z. Zhou, “Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium,” Bioresource Technology, vol. 101, no. 11, pp. 4029–4033, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Smith, A. J. Hillier, and G. J. Lees, “The nature of the stimulation of the growth of Streptococcus lactis by yeast extract,” Journal of Dairy Research, vol. 42, no. 1, pp. 123–138, 1975. View at Scopus
  43. A. Reimann, H. Biebl, and W. D. Deckwer, “Influence of iron, phosphate and methyl viologen on glycerol fermentation of Clostridium butyricum,” Applied Microbiology and Biotechnology, vol. 45, no. 1-2, pp. 47–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Twarog and R. S. Wolfe, “Enzymatic phosphorylation of butyrate,” The Journal of Biological Chemistry, vol. 237, no. 8, pp. 2474–2477, 1962. View at Scopus
  45. S. Peguin and P. Soucaille, “Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition,” Applied and Environmental Microbiology, vol. 61, no. 1, pp. 403–405, 1995. View at Scopus
  46. R. J. Lamed, J. H. Lobos, and T. M. Su, “Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum,” Applied and Environmental Microbiology, vol. 54, no. 5, pp. 1216–1221, 1988.
  47. R. Datta and J. G. Zeikus, “Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids,” Applied and Environmental Microbiology, vol. 49, no. 3, pp. 522–529, 1985. View at Scopus
  48. J. H. Jo, C. O. Jeon, S. Y. Lee, D. S. Lee, and J. M. Park, “Molecular characterization and homologous overexpression of [FeFe]-hydrogenase in Clostridium tyrobutyricum JM1,” International Journal of Hydrogen Energy, vol. 35, no. 3, pp. 1065–1073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. V. H. Edwards, “The influence of high substrate concentrations on microbial kinetics,” Biotechnology and Bioengineering, vol. 12, no. 5, pp. 679–712, 1970. View at Scopus
  50. P. J. Henderson, “Ion transport by energy-conserving biological membranes,” Annual Review of Microbiology, vol. 25, pp. 393–428, 1971. View at Scopus
  51. A. P. Zeng, A. Ross, H. Biebl, C. Tag, B. Gunzel, and W. D. Deckwer, “Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation,” Biotechnology and Bioengineering, vol. 44, no. 8, pp. 902–911, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Baut, M. Fick, M. L. Viriot, J. C. Andre, and J. M. Engasser, “Investigation of acetone butanol-ethanol fermentation by fluorescence,” Applied Microbiology and Biotechnology, vol. 41, no. 5, pp. 551–555, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Hanaki, S. Hirunmasuwan, and T. Matsuo, “Selective use of microorganisms in anaerobic treatment processes by application of immobilization,” Water Research, vol. 28, no. 4, pp. 993–996, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. L. Huang, Z. Wu, L. Zhang, C. Ming Cheung, and S. T. Yang, “Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor,” Bioresource Technology, vol. 82, no. 1, pp. 51–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Liu and S. T. Yang, “Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant,” Process Biochemistry, vol. 41, no. 4, pp. 801–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Jiang, J. Wang, S. Liang et al., “Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor,” Biotechnology and Bioengineering, vol. 108, no. 1, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Freeman, J. M. Woodley, and M. D. Lilly, “In situ product removal as a tool for bioprocessing,” Bio/Technology, vol. 11, no. 9, pp. 1007–1012, 1993. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Boyaval, J. Seta, and C. Gavach, “Concentrated propionic acid production by electrodialysis,” Enzyme and Microbial Technology, vol. 15, no. 8, pp. 683–686, 1993. View at Publisher · View at Google Scholar · View at Scopus
  59. V. Habova, K. Melzoch, M. Rychtera, and B. Sekavova, “Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth,” Desalination, vol. 162, no. 1–3, pp. 361–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. T. Zhang, H. Matsuoka, and K. Toda, “Production and recovery of propionic and acetic acids in electrodialysis culture of Propionibacterium shermanii,” Journal of Fermentation and Bioengineering, vol. 75, no. 4, pp. 276–282, 1993. View at Publisher · View at Google Scholar · View at Scopus
  61. A. H. Mollah and D. C. Stuckey, “Maximizing the production of acetone-butanol in an alginate bead fluidized bed reactor using Clostridium acetobutylicum,” Journal of Chemical Technology and Biotechnology, vol. 56, no. 1, pp. 83–89, 1993. View at Scopus
  62. I. S. Maddox, “Use of silicalite for the adsorption of n-butanol from fermentation liquors,” Biotechnology Letters, vol. 4, no. 11, pp. 759–760, 1982. View at Publisher · View at Google Scholar · View at Scopus
  63. A. B. Thompson, S. J. Cope, T. D. Swift, et al., “Adsorption of n-butanol from dilute aqueous solution with grafted calixarenes,” Langmuir, vol. 27, no. 19, pp. 11990–11998, 2011. View at Publisher · View at Google Scholar
  64. A. Inoue and K. Horikoshi, “Estimation of solvent-tolerance of bacteria by the solvent parameter log P,” Journal of Fermentation and Bioengineering, vol. 71, no. 3, pp. 194–196, 1991. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Tanaka, S. Harada, H. Kurosawa, and M. Yajima, “Immobilized Cell System with Protection against Toxic Solvents,” Biotechnology and Bioengineering, vol. 30, no. 1, pp. 22–30, 1987. View at Scopus
  66. H. Kapucu and u. Mehmetoglu, “Strategies for reducing solvent toxicity in extractive ethanol fermentation,” Applied Biochemistry and Biotechnology A, vol. 75, no. 2-3, pp. 205–214, 1998. View at Scopus
  67. V. M. Yabannavar and D. I. C. Wang, “Strategies for reducing solvent toxicity in extractive fermentations,” Biotechnology and Bioengineering, vol. 37, no. 8, pp. 716–722, 1991. View at Scopus
  68. J. Zigova, D. Vandak, S. Schlosser, and E. Sturdik, “Extraction equilibria of butyric acid with organic solvents,” Separation Science and Technology, vol. 31, no. 19, pp. 2671–2684, 1996. View at Scopus
  69. D. Vandak, J. Zigova, E. SturdIk, and S. Schlosser, “Evaluation of solvent and pH for extractive fermentation of butyric acid,” Process Biochemistry, vol. 32, no. 3, pp. 245–251, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Bilgin, C. Arisoy, and I. KirbaIlar, “Extraction equilibria of propionic and butyric acids with tri-n-octylphosphine oxide/diluent systems,” Journal of Chemical and Engineering Data, vol. 54, no. 11, pp. 3008–3013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Keshav, K. L. Wasewar, and S. Chand, “Extraction of acrylic, propionic and butyric acid using aliquat 336 in oleyl alcohol: equilibria and effect of temperature,” Industrial and Engineering Chemistry Research, vol. 48, no. 2, pp. 888–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Shity and R. Bar, “New approach for selective separation of dilute products from simulated clostridial fermentation broths using cyclodextrins,” Biotechnology and Bioengineering, vol. 39, no. 4, pp. 462–466, 1992. View at Scopus
  73. P. J. Brumm and R. Datta, Production of Organic Acids by an Improved Fermentation Process, US, 1989.
  74. R. Sillers, A. Chow, B. Tracy, and E. T. Papoutsakis, “Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance,” Metabolic Engineering, vol. 10, no. 6, pp. 321–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. J. Chang, C. H. Chou, C. Y. Ho, W. E. Chen, J. J. Lay, and C. C. Huang, “Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production,” International Journal of Hydrogen Energy, vol. 33, no. 19, pp. 5137–5146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. H. T. M. Tran, B. Cheirsilp, B. Hodgson, and K. Umsakul, “Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone-butanol-ethanol production from cassava starch,” Biochemical Engineering Journal, vol. 48, no. 2, pp. 260–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Druaux, G. Mangeot, A. Endrizzi, and J. M. Belin, “Bacterial bioconversion of primary aliphatic and aromatic alcohols into acids: effects of molecular structure and physico-chemical conditions,” Journal of Chemical Technology and Biotechnology, vol. 68, no. 2, pp. 214–218, 1997. View at Scopus
  78. J. Svitel and E. SturdIk, “n-Propanol conversion to propionic acid by Gluconobacter oxydans,” Enzyme and Microbial Technology, vol. 17, no. 6, pp. 546–550, 1995. View at Publisher · View at Google Scholar · View at Scopus