About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 489830, 12 pages
http://dx.doi.org/10.1100/2012/489830
Review Article

Genetics and Epigenetics of Parkinson's Disease

1Faculty of Medicine, University of Pisa, 56126 Pisa, Italy
2Genetics and Epigenetics of Complex Disease Program, Department of Neuroscience (DAI Neuroscience), Pisa University Hospital, Via S. Giuseppe 22, 56126 Pisa, Italy

Received 15 October 2011; Accepted 21 December 2011

Academic Editors: H. Cui and M. Hiltunen

Copyright © 2012 Fabio Coppedè. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Thomas and M. F. Beal, “Molecular insights into Parkinson's disease,” F1000 Medicine Reports, vol. 3, no. 7, 2011. View at Publisher · View at Google Scholar
  2. K. Nuytemans, J. Theuns, M. Cruts, and C. Van Broeckhoven, “Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update,” Human Mutation, vol. 31, no. 7, pp. 763–780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Ramirez, A. Heimbach, J. Gründemann et al., “Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase,” Nature Genetics, vol. 38, no. 10, pp. 1184–1191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Migliore and F. Coppedè, “Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases,” Mutation Research, vol. 667, no. 1-2, pp. 82–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Krüger, W. Kuhn, T. Müller et al., “Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease,” Nature Genetics, vol. 18, no. 2, pp. 106–108, 1998. View at Scopus
  7. J. J. Zarranz, J. Alegre, J. C. Gómez-Esteban et al., “The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia,” Annals of Neurology, vol. 55, no. 2, pp. 164–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. B. Singleton, M. Farrer, J. Johnson et al., “α-synuclein locus triplication causes Parkinson's disease,” Science, vol. 302, no. 5646, p. 841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. C. Chartier-Harlin, J. Kachergus, C. Roumier et al., “α-synuclein locus duplication as a cause of familial Parkinson's disease,” The Lancet, vol. 364, no. 9440, pp. 1167–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Paisán-Ruíz, S. Jain, E. W. Evans et al., “Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease,” Neuron, vol. 44, no. 4, pp. 595–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Zimprich, S. Biskup, P. Leitner et al., “Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology,” Neuron, vol. 44, no. 4, pp. 601–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kitada, S. Asakawa, N. Hattori et al., “Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism,” Nature, vol. 392, no. 6676, pp. 605–608, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. E. M. Valente, P. M. Abou-Sleiman, V. Caputo et al., “Hereditary early-onset Parkinson's disease caused by mutations in PINK1,” Science, vol. 304, no. 5674, pp. 1158–1160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Van Duijn, M. C. J. Dekker, V. Bonifati et al., “PARK7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36,” American Journal of Human Genetics, vol. 69, no. 3, pp. 629–634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. J. Lockhart, S. Lincoln, M. Hulihan et al., “DJ-1 mutations are a rare cause of recessively inherited early onset parkinsonism mediated by loss of protein function,” Journal of Medical Genetics, vol. 41, no. 3, p. e22, 2004. View at Scopus
  16. D. J. Hampshire, E. Roberts, Y. Crow et al., “Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36,” Journal of Medical Genetics, vol. 38, no. 10, pp. 680–682, 2001. View at Scopus
  17. Y. Liu, L. Fallon, H. A. Lashuel, Z. Liu, and P. T. Lansbury, “The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility,” Cell, vol. 111, no. 2, pp. 209–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Lautier, S. Goldwurm, A. Dürr et al., “Mutations in the GIGYF2 (TNRC15) gene at the PARK11 locus in familial Parkinson disease,” American Journal of Human Genetics, vol. 82, no. 4, pp. 822–833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Higashi, E. Iseki, M. Minegishi, T. Togo, T. Kabuta, and K. Wada, “GIGYF2 is present in endosomal compartments in the mammalian brains and enhances IGF-1-induced ERK1/2 activation,” Journal of Neurochemistry, vol. 115, no. 2, pp. 423–437, 2010. View at Publisher · View at Google Scholar
  20. K. M. Strauss, L. M. Martins, H. Plun-Favreau et al., “Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease,” Human Molecular Genetics, vol. 14, no. 15, pp. 2099–2111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Paisán-Ruiz, R. Guevara, M. Federoff et al., “Early-onset L-dopa-responsive Parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and Spatacsin mutations,” Movement Disorders, vol. 25, no. 12, pp. 1791–1800, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shojaee, F. Sina, S. S. Banihosseini et al., “Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays,” American Journal of Human Genetics, vol. 82, no. 6, pp. 1375–1384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. D. Fonzo, M. C. J. Dekker, P. Montagna et al., “FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome,” Neurology, vol. 72, no. 3, pp. 240–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Hardy, “Genetic analysis of pathways to parkinson disease,” Neuron, vol. 68, no. 2, pp. 201–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Nalls, V. Plagnol, D. G. Hernandez et al., “Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies,” The Lancet, vol. 377, no. 9766, pp. 641–649, 2011. View at Publisher · View at Google Scholar
  26. F. Coppedè, “One-carbon metabolism and Alzheimer's disease: focus on epigenetics,” Current Genomics, vol. 11, no. 4, pp. 246–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. I. A. Qureshi and M. F. Mehler, “Advances in epigenetics and epigenomics for neurodegenerative diseases,” Current Neurology and Neuroscience Reports, vol. 11, no. 5, pp. 464–473, 2011. View at Publisher · View at Google Scholar
  28. S. C. F. Marques, C. R. Oliveira, C. M. F. Pereira, and T. F. Outeiro, “Epigenetics in neurodegeneration: a new layer of complexity,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, pp. 348–355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Chen and L. Zhang, “Epigenetic mechanisms in developmental programming of adult disease,” Drug Discovery Today, vol. 16, no. 23-24, pp. 1007–1018, 2011. View at Publisher · View at Google Scholar
  30. C. Dumanchin, A. Camuzat, D. Campion et al., “Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism,” Human Molecular Genetics, vol. 7, no. 11, pp. 1825–1829, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. M. G. Spillantini and M. Goedert, “Tau mutations in familial frontotemporal dementia,” Brain, vol. 123, no. 5, pp. 857–859, 2000. View at Scopus
  32. I. Lastres-Becker, U. Rüb, and G. Auburger, “Spinocerebellar ataxia 2 (SCA2),” Cerebellum, vol. 7, no. 2, pp. 115–124, 2008. View at Scopus
  33. C. A. Matos, S. de Macedo-Ribeiro, and A. L. Carvalho, “Polyglutamine diseases: the special case of ataxin-3 and Machado-Joseph disease,” Progress in Neurobiology, vol. 95, no. 1, pp. 26–48, 2011. View at Publisher · View at Google Scholar
  34. C. S. Lu, H. C. Chang, P. C. Kuo et al., “The parkinsonian phenotype of spinocerebellar ataxia type 3 in a Taiwanese family,” Parkinsonism and Related Disorders, vol. 10, no. 6, pp. 369–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Kim, S. Hong, P. K. Gyoung et al., “Importance of low-range CAG expansion and CAA interruption in SCA2 parkinsonism,” Archives of Neurology, vol. 64, no. 10, pp. 1510–1518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Anheim, C. Lagier-Tourenne, G. Stevanin et al., “SPG11 spastic paraplegia: a new cause of juvenile parkinsonism,” Journal of Neurology, vol. 256, no. 1, pp. 104–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Guidubaldi, C. Piano, F. M. Santorelli et al., “Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism,” Movement Disorders, vol. 26, no. 3, pp. 553–556, 2011. View at Publisher · View at Google Scholar
  38. D. Orsucci, E. Caldarazzo Ienco, M. Mancuso, and G. Siciliano, “POLG1-Related and other “Mitochondrial Parkinsonisms”: an overview,” Journal of Molecular Neuroscience, vol. 44, pp. 17–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Abeliovich, Y. Schmitz, I. Fariñas et al., “Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system,” Neuron, vol. 25, no. 1, pp. 239–252, 2000. View at Scopus
  40. S. Liu, I. Ninan, I. Antonova et al., “α-synuclein produces a long-lasting increase in neurotransmitter release,” EMBO Journal, vol. 23, no. 22, pp. 4506–4516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. I. F. Mata, P. J. Lockhart, and M. J. Farrer, “Parkin genetics: one model for Parkinson's disease,” Human Molecular Genetics, vol. 13, no. 1, pp. R127–R133, 2004. View at Scopus
  42. E. Leroy, R. Boyer, G. Auburger et al., “The ubiquitin pathway in Parkinson's disease,” Nature, vol. 395, no. 6701, pp. 451–452, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Deng, M. W. Dodson, H. Huang, and M. Guo, “The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14503–14508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. McBride, A. J. Whitworth, and L. J. Pallanck, “The PINK1/Parkin pathway regulates mitochondrial morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1638–1643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. K. Berger, G. P. Cortese, K. D. Amodeo, A. Weihofen, A. Letai, and M. J. LaVoie, “Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release,” Human Molecular Genetics, vol. 18, no. 22, pp. 4317–4328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. O. Rothfuss, H. Fischer, T. Hasegawa et al., “Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair,” Human Molecular Genetics, vol. 18, no. 20, pp. 3832–3850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Kawajiri, S. Saiki, S. Sato, and N. Hattori, “Genetic mutations and functions of PINK1,” Trends in Pharmacological Sciences, vol. 32, no. 10, pp. 573–580, 2011. View at Publisher · View at Google Scholar
  49. H. Xiong, D. Wang, L. Chen et al., “Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 650–660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. K. J. Thomas, M. K. McCoy, J. Blackinton et al., “DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy,” Human Molecular Genetics, vol. 20, no. 1, pp. 40–50, 2011.
  51. J. Tan, T. Zhang, L. Jiang et al., “Regulation of intracellular manganese homeostasis by Kufor-Rakeb syndrome-associated ATP13A2 protein,” Journal of Biological Chemistry, vol. 286, no. 34, pp. 29654–29662, 2011. View at Publisher · View at Google Scholar
  52. C. M. Lill, J. T. Roehr, M. B. McQueen, et al., “The PDGene Database,” Alzheimer Research Forum, http://www.pdgene.org/.
  53. D. M. Maraganore, M. De Andrade, A. Elbaz et al., “Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease,” Journal of the American Medical Association, vol. 296, no. 6, pp. 661–670, 2006. View at Publisher · View at Google Scholar
  54. I. F. Mata, D. Yearout, V. Alvarez et al., “Replication of MAPT and SNCA, but not PARK16-18, as susceptibility genes for Parkinson's disease,” Movement Disorders, vol. 26, no. 5, pp. 819–823, 2011. View at Publisher · View at Google Scholar
  55. N. Pankratz, J. B. Wilk, J. C. Latourelle et al., “Genomewide association study for susceptibility genes contributing to familial Parkinson disease,” Human Genetics, vol. 124, no. 6, pp. 593–605, 2009. View at Publisher · View at Google Scholar
  56. J. Simón-Sánchez, C. Schulte, J. M. Bras et al., “Genome-wide association study reveals genetic risk underlying Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1308–1312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. T. L. Edwards, W. K. Scott, C. Almonte et al., “Genome-Wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for parkinson disease,” Annals of Human Genetics, vol. 74, no. 2, pp. 97–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Satake, Y. Nakabayashi, I. Mizuta et al., “Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1303–1307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Fuchs, A. Tichopad, Y. Golub et al., “Genetic variability in the SNCA gene influences α-synuclein levels in the blood and brain,” FASEB Journal, vol. 22, no. 5, pp. 1327–1334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Goris, C. H. Williams-Gray, G. R. Clark et al., “Tau and α-synuclein in susceptibility to, and dementia in, Parkinson's disease,” Annals of Neurology, vol. 62, no. 2, pp. 145–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. J. Farrer, J. T. Stone, C. H. Lin et al., “Lrrk2 G2385R is an ancestral risk factor for Parkinson's disease in Asia,” Parkinsonism and Related Disorders, vol. 13, no. 2, pp. 89–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. C. P. Zabetian, C. M. Hutter, S. A. Factor et al., “Association analysis of MAPT H1 haplotype and subhaplotypes in Parkinson's disease,” Annals of Neurology, vol. 62, no. 2, pp. 137–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Velayati, W. H. Yu, and E. Sidransky, “The role of glucocerebrosidase mutations in parkinson disease and lewy body disorders,” Current Neurology and Neuroscience Reports, vol. 10, no. 3, pp. 190–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Tayebi, J. Walker, B. Stubblefield et al., “Gaucher disease with parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism?” Molecular Genetics and Metabolism, vol. 79, no. 2, pp. 104–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Halperin, D. Elstein, and A. Zimran, “Increased incidence of Parkinson disease among relatives of patients with Gaucher disease,” Blood Cells, Molecules, and Diseases, vol. 36, no. 3, pp. 426–428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Sidransky, M. A. Nalls, J. O. Aasly et al., “Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease,” New England Journal of Medicine, vol. 361, no. 17, pp. 1651–1661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Westbroek, A. M. Gustafson, and E. Sidransky, “Exploring the link between glucocerebrosidase mutations and parkinsonism,” Trends in Molecular Medicine, vol. 17, no. 9, pp. 485–493, 2011. View at Publisher · View at Google Scholar
  68. International Parkinson's Disease Genomics Consortium (IPDGC), “A two-stage meta-analysis identifies several new loci for Parkinson's disease,” PLoS Genetics, vol. 7, no. 6, article e1002142, 2011. View at Publisher · View at Google Scholar
  69. D. Gius, H. Cui, C. M. Bradbury et al., “Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach,” Cancer Cell, vol. 6, no. 4, pp. 361–371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Obeid, A. Schadt, U. Dillmann, P. Kostopoulos, K. Fassbender, and W. Herrmann, “Methylation status and neurodegenerative markers in Parkinson disease,” Clinical Chemistry, vol. 55, no. 10, pp. 1852–1860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Herrmann and R. Obeid, “Biomarkers of folate and vitamin B12 status in cerebrospinal fluid,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 12, pp. 1614–1620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Jowaed, I. Schmitt, O. Kaut, and U. Wüllner, “Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains,” Journal of Neuroscience, vol. 30, no. 18, pp. 6355–6359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Matsumoto, H. Takuma, A. Tamaoka et al., “CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease,” PLoS ONE, vol. 5, no. 11, Article ID e15522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Bönsch, B. Lenz, J. Kornhuber, and S. Bleich, “DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism,” NeuroReport, vol. 16, no. 2, pp. 167–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Frieling, A. Gozner, K. D. Römer et al., “Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa,” Molecular Psychiatry, vol. 12, no. 3, pp. 229–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. G. E. Voutsinas, E. F. Stavrou, G. Karousos et al., “Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease,” Human Mutation, vol. 31, no. 6, pp. 685–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. O. Chiba-Falek, G. J. Lopez, and R. L. Nussbaum, “Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients,” Movement Disorders, vol. 21, no. 10, pp. 1703–1708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Gründemann, F. Schlaudraff, O. Haeckel, and B. Liss, “Elevated α-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease,” Nucleic Acids Research, vol. 36, no. 7, article e38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Desplats, B. Spencer, E. Coffee et al., “α-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases,” Journal of Biological Chemistry, vol. 286, no. 11, pp. 9031–9037, 2011. View at Publisher · View at Google Scholar
  80. X. Agirre, J. Román-Gómez, I. Vázquez et al., “Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia,” International Journal of Cancer, vol. 118, no. 8, pp. 1945–1953, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Goers, A. B. Manning-Bog, A. L. McCormack et al., “Nuclear localization of α-synuclein and its interaction with histones,” Biochemistry, vol. 42, no. 28, pp. 8465–8471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Kontopoulos, J. D. Parvin, and M. B. Feany, “α-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity,” Human Molecular Genetics, vol. 15, no. 20, pp. 3012–3023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Jin, A. Kanthasamy, A. Ghosh, Y. Yang, V. Anantharam, and A. G. Kanthasamy, “α-synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity,” Journal of Neuroscience, vol. 31, no. 6, pp. 2035–2051, 2011. View at Publisher · View at Google Scholar
  84. T. F. Outeiro, E. Kontopoulos, S. M. Altmann et al., “Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease,” Science, vol. 317, no. 5837, pp. 516–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Monti, V. Gatta, F. Piretti, S. S. Raffaelli, M. Virgili, and A. Contestabile, “Valproic acid is neuroprotective in the rotenone rat model of Parkinson's disease: involvement of α-synuclein,” Neurotoxicity Research, vol. 17, no. 2, pp. 130–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. S. K. Kidd and J. S. Schneider, “Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition,” Brain Research, vol. 1354, no. C, pp. 172–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Song, A. Kanthasamy, H. Jin, V. Anantharam, and A. G. Kanthasamy, “Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration,” NeuroToxicology, vol. 32, no. 5, pp. 586–595, 2011. View at Publisher · View at Google Scholar
  88. C. Song, A. Kanthasamy, V. Anantharam, F. Sun, and A. G. Kanthasamy, “Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration,” Molecular Pharmacology, vol. 77, no. 4, pp. 621–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. K. Kidd and J. S. Schneider, “Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease,” Neuroscience, vol. 194, pp. 189–194, 2011. View at Publisher · View at Google Scholar
  90. S. H. Chen, H. M. Wu, B. Ossola et al., “Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage,” British Journal of Pharmacology, vol. 165, no. 2, pp. 494–505, 2012. View at Publisher · View at Google Scholar
  91. S. Vartiainen, P. Pehkonen, M. Lakso, R. Nass, and G. Wong, “Identification of gene expression changes in transgenic C. elegans overexpressing human α-synuclein,” Neurobiology of Disease, vol. 22, no. 3, pp. 477–486, 2006. View at Publisher · View at Google Scholar
  92. F. Gillardon, M. Mack, W. Rist et al., “MicroRNA and proteome expression profiling in early-symptomatic α-synuclein(A30P)-transgenic mice,” Proteomics, vol. 2, no. 5, pp. 697–705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. E. Junn, K. W. Lee, S. J. Byeong, T. W. Chan, J. Y. Im, and M. M. Mouradian, “Repression of α-synuclein expression and toxicity by microRNA-7,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13052–13057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Doxakis, “Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153,” Journal of Biological Chemistry, vol. 285, no. 17, pp. 12726–12734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Asikainen, M. Rudgalvyte, L. Heikkinen et al., “Global microRNA expression profiling of caenorhabditis elegans Parkinson's disease models,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 210–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Gehrke, Y. Imai, N. Sokol, and B. Lu, “Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression,” Nature, vol. 466, no. 7306, pp. 637–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Kim, K. Inoue, J. Ishii et al., “A microRNA feedback circuit in midbrain dopamine neurons,” Science, vol. 317, no. 5842, pp. 1220–1224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Miñones-Moyano, S. Porta, G. Escaramís et al., “MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function,” Human Molecular Genetics, vol. 20, no. 15, pp. 3067–3078, 2011. View at Publisher · View at Google Scholar
  99. R. Margis, R. Margis, and C. R.M. Rieder, “Identification of blood microRNAs associated to Parkinsonós disease,” Journal of Biotechnology, vol. 152, no. 3, pp. 96–101, 2011. View at Publisher · View at Google Scholar
  100. T. Maeda, J. Z. Guan, J. I. Oyama, Y. Higuchi, and N. Makino, “Aging-associated alteration of subtelomeric methylation in Parkinson's disease,” Journals of Gerontology A, vol. 64, no. 9, pp. 949–955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Cai, J. Tian, G.-H. Zhao, W. Luo, and B.-R. Zhang, “Study of methylation levels of parkin gene promoter in Parkinson's disease patients,” International Journal of Neuroscience, vol. 121, no. 9, pp. 497–502, 2011. View at Publisher · View at Google Scholar
  102. I. Kagara, H. Enokida, K. Kawakami et al., “CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma,” Journal of Urology, vol. 180, no. 1, pp. 343–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Yu, Q. Tao, K. F. Cheung et al., “Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors,” Hepatology, vol. 48, no. 2, pp. 508–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Barrachina and I. Ferrer, “DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 8, pp. 880–891, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. H. C. Pieper, B. O. Evert, O. Kaut, P. F. Riederer, A. Waha, and U. Wüllner, “Different methylation of the TNF-alpha promoter in cortex and substantia nigra: implications for selective neuronal vulnerability,” Neurobiology of Disease, vol. 32, no. 3, pp. 521–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. I. Behrens, N. Brüggemann, P. Chana et al., “Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations,” Movement Disorders, vol. 25, no. 12, pp. 1929–1937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. S. L. Berger, “The complex language of chromatin regulation during transcription,” Nature, vol. 447, no. 7143, pp. 407–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Chouliaras, B. P. F. Rutten, G. Kenis et al., “Epigenetic regulation in the pathophysiology of Alzheimer's disease,” Progress in Neurobiology, vol. 90, no. 4, pp. 498–510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. G. Du, X. Liu, X. Chen et al., “Drosophila histone deacetylase 6 protects dopaminergic neurons against α-synuclein toxicity by promoting inclusion formation,” Molecular Biology of the Cell, vol. 21, no. 13, pp. 2128–2137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Miki, F. Mori, K. Tanji, A. Kakita, H. Takahashi, and K. Wakabayashi, “Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions,” Neuropathology, vol. 31, no. 6, pp. 561–568, 2011. View at Publisher · View at Google Scholar
  111. J. A. Olzmann, L. Li, and L. S. Chin, “Aggresome formation and neurodegenerative diseases: therapeutic implications,” Current Medicinal Chemistry, vol. 15, no. 1, pp. 47–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Su, J.-J. Shi, Y.-P. Yang et al., “HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress,” Journal of Neurochemistry, vol. 117, no. 1, pp. 112–120, 2011. View at Publisher · View at Google Scholar
  113. G. Wang, J. M. van der Walt, G. Mayhew et al., “Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein,” American Journal of Human Genetics, vol. 82, no. 2, pp. 283–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. L. de Mena, L. F. Cardo, E. Coto et al., “FGF20 rs12720208 SNP and microRNA-433 variation: no association with Parkinson's disease in Spanish patients,” Neuroscience Letters, vol. 479, no. 1, pp. 22–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. S. R. D'Mello, “Histone deacetylases as targets for the treatment of human neurodegenerative diseases,” Drug News and Perspectives, vol. 22, no. 9, pp. 513–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. M. M. Harraz, T. M. Dawson, and V. L. Dawson, “MicroRNAs in Parkinson's disease,” Journal of Chemical Neuroanatomy, vol. 42, no. 2, pp. 127–130, 2011. View at Publisher · View at Google Scholar