About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 542937, 13 pages
http://dx.doi.org/10.1100/2012/542937
Research Article

PHBV/PCL Microparticles for Controlled Release of Resveratrol: Physicochemical Characterization, Antioxidant Potential, and Effect on Hemolysis of Human Erythrocytes

1Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenue, 84030-900 Ponta Grossa, Brazil
2Laboratory of Quality Control, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, Brazil
3Laboratory of Nanotechnology, Department of Pharmacy, State University of the Center-West, 3 Simeão Camargo Varela de Sá St, 85040-080 Guarapuava, Brazil
4Department of Materials Engineering, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenue, 84030-900 Ponta Grossa, Brazil
5Department of Chemistry, Federal University of Paraná, P.O. Box 19081, 81531-990 Curitiba, Brazil

Received 30 October 2011; Accepted 30 November 2011

Academic Editor: Gian Maria Pacifici

Copyright © 2012 Jessica Bitencourt Emilio Mendes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Microparticles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) containing resveratrol were successfully prepared by simple emulsion/solvent evaporation. All formulations showed suitable encapsulation efficiency values higher than 80%. PHBV microparticles revealed spherical shape with rough surface and presence of pores. PCL microparticles were spherically shaped with smooth surface. Fourier-transformed infrared spectra demonstrated no chemical bond between resveratrol and polymers. X-ray powder diffraction patterns and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. These PHBV/PCL microparticles delayed the dissolution profile of resveratrol. Release profiles were better fitted to biexponential equation. The hypochlorous-acid-scavenging activity and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation discoloration assay confirmed that the antioxidant activity of PHBV/PCL microparticles was kept, but was dependent on the microparticle morphology and dissolution profile. Resveratrol-loaded PHBV/PCL microparticles showed no cytotoxic effect on red blood cells.