About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 542937, 13 pages
http://dx.doi.org/10.1100/2012/542937
Research Article

PHBV/PCL Microparticles for Controlled Release of Resveratrol: Physicochemical Characterization, Antioxidant Potential, and Effect on Hemolysis of Human Erythrocytes

1Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenue, 84030-900 Ponta Grossa, Brazil
2Laboratory of Quality Control, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, Brazil
3Laboratory of Nanotechnology, Department of Pharmacy, State University of the Center-West, 3 Simeão Camargo Varela de Sá St, 85040-080 Guarapuava, Brazil
4Department of Materials Engineering, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenue, 84030-900 Ponta Grossa, Brazil
5Department of Chemistry, Federal University of Paraná, P.O. Box 19081, 81531-990 Curitiba, Brazil

Received 30 October 2011; Accepted 30 November 2011

Academic Editor: Gian Maria Pacifici

Copyright © 2012 Jessica Bitencourt Emilio Mendes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Ö. Karacay, A. Sepici-Dincel, D. Karcaaltincaba et al., “A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24–36 weeks of gestation,” Diabetes Research and Clinical Practice, vol. 89, no. 3, pp. 231–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. B. Pandey and S. I. Rizvi, “Resveratrol may protect plasma proteins from oxidation under conditions of oxidative stress in vitro,” Journal of the Brazilian Chemical Society, vol. 21, no. 5, pp. 909–913, 2010. View at Scopus
  3. K. Premkumar and C. L. Bowlus, “Ascorbic acid reduces the frequency of iron induced micronuclei in bone marrow cells of mice,” Mutation Research—Genetic Toxicology and Environmental Mutagenesis, vol. 542, no. 1-2, pp. 99–103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. L. B. S. Barreiros, J. M. David, and J. P. David, “Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo,” Quimica Nova, vol. 29, no. 1, pp. 113–123, 2006. View at Scopus
  5. G. Shi, L. Rao, H. Yu, H. Xiang, H. Yang, and R. Ji, “Stabilization and encapsulation of photosensitive resveratrol within yeast cell,” International Journal of Pharmaceutics, vol. 349, no. 1-2, pp. 83–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. D. Norata, P. Marchesi, S. Passamonti, A. Pirillo, F. Violi, and A. L. Catapano, “Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice,” Atherosclerosis, vol. 191, no. 2, pp. 265–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. N. S. Shenouda, C. Zhou, J. D. Browning et al., “Phytoestrogens in common herbs regulate prostate cancer cell growth in vitro,” Nutrition and Cancer, vol. 49, no. 2, pp. 200–208, 2004. View at Scopus
  8. S. Jarolim, J. Millen, G. Heeren, P. Laun, D. S. Goldfarb, and M. Breitenbach, “A novel assay for replicative lifespan in Saccharomyces cerevisiae,” FEMS Yeast Research, vol. 5, no. 2, pp. 169–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. M. Pacifici, “Inhibition of human liver and duodenum sulfotransferases by drugs and dietary chemicals: a review of the literature,” International Journal of Clinical Pharmacology and Therapeutics, vol. 42, no. 9, pp. 488–495, 2004. View at Scopus
  10. R. E. King, J. A. Bomser, and D. B. Min, “Bioactivity of resveratrol,” Comprehensive Reviews in Food Science and Food Safety, vol. 5, no. 3, pp. 65–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Das and K. Y. Ng, “Resveratrol-loaded calcium-pectinate beads: effects of formulation parameters on drug release and bead characteristics,” Journal of Pharmaceutical Sciences, vol. 99, no. 2, pp. 840–860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Lucas-Abellán, I. Fortea, J. M. López-Nicolás, and E. Núñez-Delicado, “Cyclodextrins as resveratrol carrier system,” Food Chemistry, vol. 104, no. 1, pp. 39–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Baur and D. A. Sinclair, “Therapeutic potential of resveratrol: the in vivo evidence,” Nature Reviews Drug Discovery, vol. 5, no. 6, pp. 493–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Jang, L. Cai, G. O. Udeani et al., “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science, vol. 275, no. 5297, pp. 218–220, 1997. View at Scopus
  15. D. Nemen and E. Lemos-Senna, “Preparação e caracterização de suspensões coloidais de nanocarreadores lipídicos contendo resveratrol destinados á administração cutânea,” Química Nova, vol. 34, no. 3, pp. 408–413, 2011.
  16. B. K. Kim, J. S. Lee, J. K. Oh, and D. J. Park, “Preparation of resveratrol-loaded poly(ε-caprolactone) nanoparticles by oil-in-water emulsion solvent evaporation method,” Food Science and Biotechnology, vol. 18, no. 1, pp. 157–161, 2009.
  17. Z. Piñeiro, M. Palma, and C. G. Barroso, “Determination of trans-resveratrol in grapes by pressurised liquid extraction and fast high-performance liquid chromatography,” Journal of Chromatography A, vol. 1110, no. 1-2, pp. 61–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. C. Trela and A. L. Waterhouse, “Resveratrol: isomeric molar absorptivities and stability,” Journal of Agricultural and Food Chemistry, vol. 44, no. 5, pp. 1253–1257, 1996. View at Scopus
  19. Z. Lu, B. Cheng, Y. Hu, Y. Zhang, and G. Zou, “Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity,” Food Chemistry, vol. 113, no. 1, pp. 17–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. L. Frozza, A. Bernardi, K. Paese et al., “Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats,” Journal of Biomedical Nanotechnology, vol. 6, no. 6, pp. 694–703, 2010. View at Publisher · View at Google Scholar
  21. E. A. Oganesyan, I. I. Miroshnichenko, N. S. Vikhrieva, A. A. Lyashenko, and S. Y. Leshkov, “Use of nanoparticles to increase the systemic bioavailability of trans-resveratrol,” Pharmaceutical Chemistry Journal, vol. 44, no. 2, pp. 25–27, 2010. View at Scopus
  22. H. Peng, H. Xiong, J. Li et al., “Vanillin cross-linked chitosan microspheres for controlled release of resveratrol,” Food Chemistry, vol. 121, no. 1, pp. 23–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. K. Riekes, F. M. Barboza, D. D. Vecchia et al., “Evaluation of oral carvedilol microparticles prepared by simple emulsion technique using poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone as polymers,” Materials Science and Engineering C, vol. 31, no. 5, pp. 962–968, 2011. View at Publisher · View at Google Scholar
  24. ICH-Harmonised Tripartity Guideline, Validation of Analytical Procedures: Methodology, International Federation of Pharmaceutical Manufacturers & Associations, Geneva, Switzerland, 2005.
  25. K. A. Khan, “The concept of dissolution efficiency,” Journal of Pharmacy and Pharmacology, vol. 27, no. 1, pp. 48–49, 1975. View at Scopus
  26. R. C. R. Beck, A. R. Pohlmann, E. V. Benvenutti, T. D. Costa, and S. S. Guterres, “Nanostructure-coated diclofenac-loaded microparticles: preparation, morphological characterization, in vitro release and in vivo gastrointestinal tolerance,” Journal of the Brazilian Chemical Society, vol. 16, no. 6, pp. 1233–1240, 2005. View at Scopus
  27. J. Siepmann and N. A. Peppas, “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC),” Advanced Drug Delivery Reviews, vol. 48, no. 2-3, pp. 139–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Dypbukt, C. Bishop, W. M. Brooks, B. Thong, H. Eriksson, and A. J. Kettle, “A sensitive and selective assay for chloramine production by myeloperoxidase,” Free Radical Biology and Medicine, vol. 39, no. 11, pp. 1468–1477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radical Biology and Medicine, vol. 26, no. 9-10, pp. 1231–1237, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Li, G. C. Irvin, B. Simmons et al., “Structured materials syntheses in a self-assembled surfactant mesophase,” Colloids and Surfaces A, vol. 174, no. 1-2, pp. 275–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. C. D. Hapner, P. Deuster, and Y. Chen, “Inhibition of oxidative hemolysis by quercetin, but not other antioxidants,” Chemico-Biological Interactions, vol. 186, no. 3, pp. 275–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Banerjee, A. Kunwar, B. Mishra, and K. I. Priyadarsini, “Concentration dependent antioxidant/pro-oxidant activity of curcumin. Studies from AAPH induced hemolysis of RBCs,” Chemico-Biological Interactions, vol. 174, no. 2, pp. 134–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Bosquillon, P. G. Rouxhet, F. Ahimou et al., “Aerosolization properties, surface composition and physical state of spray-dried protein powders,” Journal of Controlled Release, vol. 99, no. 3, pp. 357–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. F. Hung, C. L. Fang, M. H. Liao, and J. Y. Fang, “The effect of oil components on the physicochemical properties and drug delivery of emulsions: tocol emulsion versus lipid emulsion,” International Journal of Pharmaceutics, vol. 335, no. 1-2, pp. 193–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Maghsoodi, “Physicomechanical properties of naproxen-loaded microparticles prepared from eudragit L100,” American Association of Pharmaceutical Scientists, vol. 10, no. 1, pp. 120–128, 2009. View at Publisher · View at Google Scholar
  36. P. V. Farago, R. P. Raffin, A. R. Pohlmann, S. S. Guterres, and S. F. Zawadzki, “Physicochemical characterization of a hydrophilic model drug-loaded PHBV microparticles obtained by the double emulsion/solvent evaporation technique,” Journal of the Brazilian Chemical Society, vol. 19, no. 7, pp. 1298–1305, 2008. View at Scopus
  37. M. A. T. Duarte, R. G. Hugen, E. S. Martins, A. P. T. Pezzin, and S. H. Pezzin, “Thermal and mechanical behavior of injection molded poly(3-hydroxybutyrate/poly(ε-caprolactone) blends,” Materials Research, vol. 9, no. 1, pp. 25–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. H. K. Stulzer, M. A. S. Silva, D. Fernandes, and J. Assreuy, “Development of controlled release captopril granules coated with ethylcellulose and methylcellulose by fluid bed dryer,” Drug Delivery, vol. 15, no. 1, pp. 11–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy, “Gastrointestinal uptake of biodegradable microparticles: effect of particle size,” Pharmaceutical Research, vol. 13, no. 12, pp. 1838–1845, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Y. K. Chew and H. K. Chan, “Effect of powder polydispersity on aerosol generation,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 2, pp. 162–168, 2002. View at Scopus
  41. F. S. Poletto, E. Jager, M. I. Ré, S. S. Guterres, and A. R. Pohlmann, “Rate-modulating PHBHV/PCL microparticles containing weak acid model drugs,” International Journal of Pharmaceutics, vol. 345, no. 1-2, pp. 70–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. K. A. Ansari, P. R. Vavia, F. Trotta, and R. Cavalli, “Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study,” American Association of Pharmaceutical Scientists, vol. 12, no. 1, pp. 279–286, 2011. View at Publisher · View at Google Scholar
  43. H. K. Stulzer, M. P. Tagliari, A. L. Parize, M. A. S. Silva, and M. C. M. Laranjeira, “Evaluation of cross-linked chitosan microparticles containing acyclovir obtained by spray-drying,” Materials Science and Engineering C, vol. 29, no. 2, pp. 387–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Kim, W. K. Ng, Y. Dong, S. Das, and R. B. H. Tan, “Preparation and physicochemical characterization of trans-resveratrol nanoparticles by temperature-controlled antisolvent precipitation,” Journal of Food Engineering, vol. 108, no. 1, pp. 37–42, 2012. View at Publisher · View at Google Scholar
  45. X. Sun, Y. Shao, and W. Yan, “Measurement and correlation of solubilities of trans-resveratrol in ethanol+water and acetone+water mixed solvents at different temperatures,” Journal of Chemical and Engineering Data, vol. 53, no. 11, pp. 2562–2566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. K. A. Fortunato, M. M. Doile, I. C. Schmücker, S. K. Schucko, M. A. S. Silva, and P. O. Rodrigues, “Influência da complexação com β-ciclodextrina sobre a liberação do acetato de dexametasona a partir de matrizes hidrofílicas de hidroxipropilmetilcelulose (HPMC) e polioxetileno (PEO),” Latin American Journal of Pharmacy, vol. 26, no. 4, pp. 513–521, 2007. View at Scopus
  47. R. P. Raffin, L. M. Colomé, A. R. Pohlmann, and S. S. Guterres, “Preparation, characterization, and in vivo anti-ulcer evaluation of pantoprazole-loaded microparticles,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 63, no. 2, pp. 198–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. L. F. Cótica, V. F. Freitas, G. S. Dias et al., “Simple and facile approach to synthesize magnetite nanoparticles and assessment of their effects on blood cells,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 4, pp. 559–563, 2012. View at Publisher · View at Google Scholar
  49. H. J. Jung, Y. B. Seu, and D. G. Lee, “Candicidal action of resveratrol isolated from grapes on human pathogenic yeast C. albicans,” Journal of Microbiology and Biotechnology, vol. 17, no. 8, pp. 1324–1329, 2007. View at Scopus