About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 598653, 5 pages
http://dx.doi.org/10.1100/2012/598653
Research Article

Does Thrombocyte Size Give Us an Idea about Thrombocytosis Etiology?

1Department of Hematology, Faculty of Medicine, Baskent University, 06490 Ankara, Turkey
2Department of Biostatistics, Faculty of Medicine, Ankara University, 06100 Ankara, Turkey
3Hematology Laboratory, Faculty of Medicine, Baskent University, 06490 Ankara, Turkey
4Department of Plastic, Reconstructive and Aesthetic Surgery, Ankara Training and Research Hospital, 06080 Ankara, Turkey

Received 4 July 2012; Accepted 22 August 2012

Academic Editors: A. Guerrasio and I. Lorand-Metze

Copyright © 2012 Selami Kocak Toprak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kaushansky, “The molecular mechanisms that control thrombopoiesis,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3339–3347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Kaushansky, “Reactive thrombocytosis,” in Williams Hematology, K. Kaushansky, M. A. Lichtman, E. Beutler, et al., Eds., pp. 1929–1932, McGraw-Hill, New York, NY, USA, 8th edition, 2010.
  3. P. A. Beer, W. N. Erber, P. J. Campbell, and A. R. Green, “How I treat essential thrombocythemia,” Blood, vol. 117, no. 5, pp. 1472–1482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Tefferi and J. W. Vardiman, “Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms,” Leukemia, vol. 22, no. 1, pp. 14–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Beutler, “Disorders of iron metabolism,” in Williams Hematology, K. Kaushansky, M. A. Lichtman, E. Beutler, et al., Eds., pp. 565–606, McGraw-Hill, New York, NY, USA, 8th edition, 2010.
  6. J. C. Osselaer, J. Jamart, and J. M. Scheiff, “Platelet distribution width for differential diagnosis of thrombocytosis,” Clinical Chemistry, vol. 43, no. 6, pp. 1072–1076, 1997. View at Scopus
  7. E. Sehayek, N. Ben-Yosef, M. Modan, A. Chetrit, and D. Meytes, “Platelet parameters and aggregation in essential and reactive thrombocytosis,” American Journal of Clinical Pathology, vol. 90, no. 4, pp. 431–436, 1988. View at Scopus
  8. B. M. Small and R. E. Bettigole, “Diagnosis of myeloproliferative disease by analysis of the platelet volume distribution,” American Journal of Clinical Pathology, vol. 76, no. 5, pp. 685–691, 1981. View at Scopus
  9. J. L. Miller, “Blood platelets,” in Clinical Diagnosis and Management by Laboratory Methods, J. B. Henry, Ed., pp. 632–641, Saunders, Philadelphia, Pa, USA, 20th edition, 2001.
  10. S. S. Graham, B. Traub, and I. B. Mink, “Automated platelet-sizing parameters on a normal population,” American Journal of Clinical Pathology, vol. 87, no. 3, pp. 365–369, 1987. View at Scopus
  11. J. D. Bessman, “The relation of megakaryocyte ploidy to platelet volume,” American Journal of Hematology, vol. 16, no. 2, pp. 161–170, 1984. View at Scopus
  12. J. Van Der Lelie and A. K. R. Von Dem Borne, “Platelet volume analysis for differential diagnosis of thrombocytosis,” Journal of Clinical Pathology, vol. 39, no. 2, pp. 129–133, 1986. View at Scopus
  13. J. Levin and J. D. Bessman, “The inverse relation between platelet volume and platelet number. Abnormalities in hematologic disease and evidence that platelet size does not correlate with platelet age,” Journal of Laboratory and Clinical Medicine, vol. 101, no. 2, pp. 295–307, 1983. View at Scopus
  14. G. Y. Hu, M. Y. Deng, G. S. Zhang, Y. Y. Luo, and J. F. Zhu, “The frequency of JAK2 V617F mutation, expression level of phosphorylated JAK/STATs proteins and their clinical significance in myeloproliferative disorders patients,” Zhonghua Xue Ye Xue Za Zhi, vol. 30, no. 6, pp. 394–398, 2009. View at Scopus
  15. P. G. Heller, P. R. Lev, J. P. Salim et al., “JAK2V617F mutation in platelets from essential thrombocythemia patients: correlation with clinical features and analysis of STAT5 phosphorylation status,” European Journal of Haematology, vol. 77, no. 3, pp. 210–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Randi, E. Ruzzon, F. Tezza et al., “JAK2V617F mutation is common in old patients with polycythemia vera and essential thrombocythemia,” Aging, vol. 23, no. 1, pp. 17–21, 2011. View at Scopus
  17. K. Abdulkarim, B. Ridell, P. Johansson, J. Kutti, S. Safai-Kutti, and B. Andréasson, “The impact of peripheral blood values and bone marrow findings on prognosis for patients with essential thrombocythemia and polycythemia vera,” European Journal of Haematology, vol. 86, no. 2, pp. 148–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Carobbio, E. Antonioli, P. Guglielmelli et al., “Leukocytosis and risk stratification assessment in essential thrombocythemia,” Journal of Clinical Oncology, vol. 26, no. 16, pp. 2732–2736, 2008. View at Publisher · View at Google Scholar · View at Scopus