About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 605610, 15 pages
http://dx.doi.org/10.1100/2012/605610
Research Article

Robust Optimization of Alginate-Carbopol 940 Bead Formulations

1Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, C/ Professor García González 2, 41012 Seville, Spain
2Department of Industrial Management, School of Engineering, University of Seville, C/ Camino de los Descubrimientos s/n, 41092 Seville, Spain

Received 31 October 2011; Accepted 8 December 2011

Academic Editor: Ali Nokhodchi

Copyright © 2012 J. M. López-Cacho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. I. Draget, “Alginates,” in Handbook of Hydrocolloids, G. O. Philips and P. A. Williams, Eds., pp. 379–395, Woodhead Publishing Limited, Cambridge, UK, 2000.
  2. G. Orive, S. Ponce, R. M. Hernández, A. R. Gascón, M. Igartua, and J. L. Pedraz, “Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates,” Biomaterials, vol. 23, no. 18, pp. 3825–3831, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. George and T. E. Abraham, “Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review,” Journal of Controlled Release, vol. 114, no. 1, pp. 1–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. S. Kim, H. W. Kim, S. H. Lee, K. S. Shin, H. W. Hur, and Y. H. Rhee, “Preparation of alginate-quaternary ammonium complex beads and evaluation of their antimicrobial activity,” International Journal of Biological Macromolecules, vol. 41, no. 1, pp. 36–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. W. Vandenberg, C. Drolet, S. L. Scott, and J. de la Noüe, “Factors affecting protein release from alginate-chitosan coacervate microcapsules during production and gastric/intestinal simulation,” Journal of Controlled Release, vol. 77, no. 3, pp. 297–307, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. L. González-Rodríguez, M. A. Holgado, C. Sánchez-Lafuente, A. M. Rabasco, and A. Fini, “Alginate/chitosan particulate systems for sodium diclofenac release,” International Journal of Pharmaceutics, vol. 232, no. 1-2, pp. 225–234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Al-Kassas, O. M. N. Al-Gohary, and M. M. Al-Faadhel, “Controlling of systemic absorption of gliclazide through incorporation into alginate beads,” International Journal of Pharmaceutics, vol. 341, no. 1-2, pp. 230–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. K. E. McEntee, S. K. Bhatia, L. Tao, S. C. Roberts, and S. R. Bhatia, “Tunable transport of glucose through ionically-crosslinked alginate gels: effect of alginate and calcium concentration,” Journal of Applied Polymer Science, vol. 107, no. 5, pp. 2956–2962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Gu, B. Amsden, and R. Neufeld, “Sustained delivery of vascular endothelial growth factor with alginate beads,” Journal of Controlled Release, vol. 96, no. 3, pp. 463–472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Pongjanyakul and S. Puttipipatkhachorn, “Xanthan-alginate composite gel beads: molecular interaction and in vitro characterization,” International Journal of Pharmaceutics, vol. 331, no. 1, pp. 61–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Hua, H. Ma, X. Li, H. Yang, and A. Wang, “pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium,” International Journal of Biological Macromolecules, vol. 46, no. 5, pp. 517–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. González Ferreiro, L. Tillman, G. Hardee, and R. Bodmeier, “Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers,” International Journal of Pharmaceutics, vol. 239, no. 1-2, pp. 47–59, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Kim, G. D. Park, S. W. Jun, S. Lee, J. S. Park, and S. J. Hwang, “Controlled release tamsulosin hydrochloride from alginate beads with waxy materials,” Journal of Pharmacy and Pharmacology, vol. 57, no. 12, pp. 1521–1528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Pongjanyakul, S. Sungthongjeen, and S. Puttipipatkhachorn, “Modulation of drug release from glyceryl palmitostearate-alginate beads via heat treatment,” International Journal of Pharmaceutics, vol. 319, no. 1-2, pp. 20–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Puttipipatkhachorn, T. Pongjanyakul, and A. Priprem, “Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics,” International Journal of Pharmaceutics, vol. 293, no. 1-2, pp. 51–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Silva, A. J. Ribeiro, D. Ferreira, and F. Veiga, “Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation,” European Journal of Pharmaceutical Sciences, vol. 29, no. 2, pp. 148–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sugawara, T. Imai, and M. Otagiri, “The controlled release of prednisolone using alginate gel,” Pharmaceutical Research, vol. 11, no. 2, pp. 272–277, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Yotsuyanagi, T. Ohkubo, T. Ohhashi, and K. Ikeda, “Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels,” Chemical and Pharmaceutical Bulletin, vol. 35, no. 4, pp. 1555–1563, 1987. View at Scopus
  19. H. Tomida, C. Mizuo, C. Nakamura, and S. Kiryu, “Imipramine release from Ca-alginate gel beads,” Chemical and Pharmaceutical Bulletin, vol. 41, no. 8, pp. 1475–1477, 1993. View at Scopus
  20. T. Ostberg, E. M. Lund, and C. Graffner, “Calcium alginate matrices for oral multiple unit administration IV. Release characteristics in different media,” International Journal of Pharmaceutics, vol. 112, no. 3, pp. 241–248, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. F. L. Mi, H. W. Sung, and S. S. Shyu, “Drug release from chitosan-alginate complex beads reinforced by a naturally occurring cross-linking agent,” Carbohydrate Polymers, vol. 48, no. 1, pp. 61–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Tapia, Z. Escobar, E. Costa et al., “Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 65–75, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Neau, M. Y. Chow, G. A. Hileman, M. J. Durrani, F. Gheyas, and B. A. Evans, “Formulation and process considerations for beads containing Carbopol® 974P, NF resin made by extrusion-spheronization,” International Journal of Pharmaceutics, vol. 199, no. 2, pp. 129–140, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. G. S. Bommareddy, S. Paker-Leggs, K. K. Saripella, and S. H. Neau, “Extruded and spheronized beads containing Carbopol® 974P to deliver nonelectrolytes and salts of weakly basic drugs,” International Journal of Pharmaceutics, vol. 321, no. 1-2, pp. 62–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Subba Rao, S. S. Madhavendra, R. Sreenivas Rao, P. J. Hobbs, and R. S. Prakasham, “Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized bacillus circulans (MTCC 6811) using overall evaluation criteria,” Applied Biochemistry and Biotechnology, vol. 150, no. 1, pp. 65–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. S. Saudagar and R. S. Singhal, “Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus,” Bioresource Technology, vol. 98, no. 10, pp. 2010–2017, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Potumarthi, C. Subhakar, A. Pavani, and A. Jetty, “Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods,” Bioresource Technology, vol. 99, no. 6, pp. 1776–1786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Dagbagli and Y. Goksungur, “Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology,” Electronic Journal of Biotechnology, vol. 11, no. 4, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Singh, F. Seedat, V. Pillay, J. L. Sweet, and M. P. Danckwerts, “Formulation and statistical optimization of novel double-incorporated PLA-PLGA microparticles within an alginate-pectinate platform for the delivery of nicotine,” Journal of Microencapsulation, vol. 23, no. 2, pp. 153–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Gazori, M. R. Khoshayand, E. Azizi, P. Yazdizade, A. Nomani, and I. Haririan, “Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization,” Carbohydrate Polymers, vol. 77, no. 3, pp. 599–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Rao, C. G. Kumar, R. S. Prakasham, and P. J. Hobbs, “The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal,” Biotechnology Journal, vol. 3, no. 4, pp. 510–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, New York, NY, USA, 2001.
  33. J. Y. Houng, H. F. Hsu, Y. H. Liu, and J. Y. Wu, “Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl 4-chloro acetoacetate by bakers' yeast,” Journal of Biotechnology, vol. 100, no. 3, pp. 239–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Adnani, M. Basri, E. A. Malek et al., “Optimization of lipase-catalyzed synthesis of xylitol ester by Taguchi robust design method,” Industrial Crops and Products, vol. 31, no. 2, pp. 350–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Taguchi, “System of experimental design,” in Engineering Methods to Optimize Quality and Minimize Costs, Kraus International, White Plains, NY, USA, 1987.
  36. V. Mandal, Y. Mohan, and S. Hemalatha, “Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design,” Journal of Pharmaceutical and Biomedical Analysis, vol. 46, no. 2, pp. 322–327, 2008. View at Publisher · View at Google Scholar
  37. S. H. Lee, D. Heng, W. K. Ng, H. K. Chan, and R. B. H. Tan, “Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 192–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. L. I. Tong, C. H. Wang, C. C. Chen, and C. T. Chen, “Dynamic multiple responses by ideal solution analysis,” European Journal of Operational Research, vol. 156, no. 2, pp. 433–444, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Cerdeira, L. F. Gouveia, P. Goucha, and A. J. Almeida, “Drug particle size influence on enteric beads produced by a droplet extrusion/precipitation method,” Journal of Microencapsulation, vol. 17, no. 6, pp. 733–741, 2000. View at Scopus
  40. P. Smrdel, M. Bogataj, and A. Mrhar, “The influence of selected parameters on the size and shape of alginate beads prepared by ionotropic gelation,” Scientia Pharmaceutica, vol. 76, no. 1, pp. 77–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. A. K. Anal and W. F. Stevens, “Chitosan-alginate multilayer beads for controlled release of ampicillin,” International Journal of Pharmaceutics, vol. 290, no. 1-2, pp. 45–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. K. Basu and A. Rajendran, “Studies in the development of nateglinide loaded calcium alginate and chitosan coated calcium alginate beads,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 8, pp. 1077–1084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Roger, D. Talbot, and A. Bee, “Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films,” Journal of Magnetism and Magnetic Materials, vol. 305, no. 1, pp. 221–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Albertini, N. Passerini, M. L. González-Rodríguez, B. Perissutti, and L. Rodriguez, “Effect of Aerosil® on the properties of lipid controlled release microparticles,” Journal of Controlled Release, vol. 100, no. 2, pp. 233–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Jahanshahi, M. H. Sanati, and Z. Babaei, “Optimization of parameters for the fabrication of gelatin nanoparticles by the Taguchi robust design method,” Journal of Applied Statistics, vol. 35, no. 12, pp. 1345–1353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. M. Mousavi, S. Yaghmaei, A. Jafari, M. Vossoughi, and Z. Ghobadi, “Optimization of ferrous biooxidation rate in a packed bed bioreactor using Taguchi approach,” Chemical Engineering and Processing, vol. 46, no. 10, pp. 935–940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Khosla, S. Kumar, and K. K. Aggarwal, “Identification of strategy parameters for particle swarm optimizer through Taguchi method,” Journal of Zhejiang University Science, vol. 7, no. 12, pp. 1989–1994, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Tan, A. S. Zaimoglu, S. Hinislioglu, and S. Altun, “Taguchi approach for optimization of the bleeding on cement-based grouts,” Tunnelling and Underground Space Technology, vol. 20, no. 2, pp. 167–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Sahin, “Optimal testing parameters on the wear behaviour of various steels,” Materials and Design, vol. 27, no. 6, pp. 455–460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. K. Chun, C. S. Cho, and H. K. Choi, “Mucoadhesive microspheres prepared by interpolymer complexation and solvent diffusion method,” International Journal of Pharmaceutics, vol. 288, no. 2, pp. 295–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Thu, P. Bruheim, T. Espevik, O. Smidsrød, P. Soon-Shiong, and G. Skjåk-Bræk, “Alginate polycation microcapsules: II. Some functional properties,” Biomaterials, vol. 17, no. 11, pp. 1069–1079, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Türkoglu, A. Gürsoy, L. Eroglu, and I. Okar, “Effect of aqueous polymer dispersions on properties of diclofenac/alginate beads and in vivo evaluation in rats,” S.T.P. Pharma Sciences, vol. 7, no. 3, pp. 135–140, 1997.
  53. G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, and M. Rinaudo, “Physico-chemical characterization of Ca-alginate microparticles produced with different methods,” Biomaterials, vol. 20, no. 15, pp. 1427–1435, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Gal and A. Nussinovitch, “Hydrocolloid carriers with filler inclusion for diltiazem hydrochloride release,” Journal of Pharmaceutical Sciences, vol. 96, no. 1, pp. 168–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. George and T. E. Abraham, “pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs,” International Journal of Pharmaceutics, vol. 335, no. 1-2, pp. 123–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Sriamornsak, “Investigation of pectin as a carrier for oral delivery of proteins using calcium pectinate gel beads,” International Journal of Pharmaceutics, vol. 169, no. 2, pp. 213–220, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Shariff, M. PK, P. KLK, and M. M, “Entrapment of andrographolide in cross-linked alginate pellets: I. Formulation and evaluation of associated release kinetics,” Pakistan Journal of Pharmaceutical Sciences, vol. 20, no. 1, pp. 1–9, 2007. View at Scopus