About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 608954, 11 pages
http://dx.doi.org/10.1100/2012/608954
Research Article

Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

1Department of Biology and Environment, Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
2Department of Soil Science, Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
3Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
4Department of Biology, Lund University, 22362 Lund, Sweden

Received 24 October 2011; Accepted 5 December 2011

Academic Editors: A. M. De Ron and J. R. Qasem

Copyright © 2012 Carlos M. Correia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Meteorological Organization, “Scientific assessment of ozone depletion: 2006,” Global Ozone Research and Monitoring Project number 50, 2007.
  2. P. S. Searles, S. D. Flint, and M. M. Caldwell, “A meta-analysis of plant field studies simulating stratospheric ozone depletion,” Oecologia, vol. 127, no. 1, pp. 1–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. V. G. Kakani, K. R. Reddy, D. Zhao, and K. Sailaja, “Field crop responses to ultraviolet-B radiation: a review,” Agricultural and Forest Meteorology, vol. 120, no. 1–4, pp. 191–218, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. A. Torbert, S. A. Prior, H. H. Rogers, and G. B. Runion, “Elevated atmospheric CO2 effects on N fertilization in grain sorghum and soybean,” Field Crops Research, vol. 88, pp. 57–67, 2004.
  5. U. Mark, M. Saile-Mark, and M. Tevini, “Effects of solar UVB radiation on growth, flowering and yield of central and southern European maize cultivars (Zea mays L.),” Photochemistry and Photobiology, vol. 64, no. 3, pp. 457–463, 1996. View at Scopus
  6. C. M. Correia, E. L. V. Areal, M. S. Torres-Pereira, and J. M. G. Torres-Pereira, “Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions. I. growth and morphological aspects,” Field Crops Research, vol. 59, no. 2, pp. 81–89, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Carletti, A. Masi, A. Wonisch, D. Grill, M. Tausz, and M. Ferretti, “Changes in antioxidant and pigment pool dimensions in UV-B irradiated maize seedlings,” Environmental and Experimental Botany, vol. 50, no. 2, pp. 149–157, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Gao, Y. Zheng, J. R. Slusser et al., “Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment,” Journal of Photochemistry and Photobiology B, vol. 80, no. 1, pp. 127–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Quaggiotti, A. R. Trentin, F. D. Vecchia, and R. Ghisi, “Response of maize (Zea mays L.) nitrate reductase to UV-B radiation,” Plant Science, vol. 167, no. 1, pp. 107–116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. R. Blanding, S. J. Simmons, P. Casati, V. Walbot, and A. E. Stapleton, “Coordinated regulation of maize genes during increasing exposure to ultraviolet radiation: identification of ultraviolet-responsive genes, functional processes and associated potential promoter motifs,” Plant Biotechnology Journal, vol. 5, no. 6, pp. 677–695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Correia, J. F. Coutinho, L. O. Björn, and J. M. G. Torres-Pereira, “Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions,” European Journal of Agronomy, vol. 12, no. 2, pp. 117–125, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Correia, J. M. M. Pereira, J. F. Coutinho, L. O. Björn, and J. M. G. Torres-Pereira, “Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study,” European Journal of Agronomy, vol. 22, no. 3, pp. 337–347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Zancan, S. Cesco, and R. Ghisi, “Effect of UV-B radiation on iron content and distribution in maize plants,” Environmental and Experimental Botany, vol. 55, no. 3, pp. 266–272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. O. Björn and T. M. Murphy, “Computer calculation of solar ultraviolet radiation at ground level,” Physiologie Végétale, vol. 23, pp. 555–561, 1985.
  15. R. W. Thimijan, H. R. Carns, and L. E. Campbell, Final Report. Radiation Sources and Related Environmental Control for Biological and Climatic Effects: UV Research (BACER), Unites States Environmental Protection Agency, Washington, DC, USA, 1978.
  16. E. M. Middleton and A. H. Teramura, “Understanding photosynthesis, pigment and growth responses induced by UV-B and UV-A irradiances,” Photochemistry and Photobiology, vol. 60, no. 1, pp. 38–45, 1994. View at Scopus
  17. H. A. Mills and J. Benton Jones, Plant Analysis Handbook II, Micro-Macro Publishing Incorporated, Athens, Greece, 1996.
  18. G. W. Snedecor and W. G. Cochran, Statistical Methods, Iowa State University, Des Moines, Iowa, USA, 1980.
  19. G. Deckmyn and I. Impens, “UV-B increases the harvest index of bean (Phaseolus vulgaris L.),” Plant, Cell and Environment, vol. 18, no. 12, pp. 1426–1433, 1995. View at Scopus
  20. M. C. Rousseaux, C. L. Ballaré, A. L. Scopel, P. S. Searles, and M. M. Caldwell, “Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina),” Oecologia, vol. 116, no. 4, pp. 528–535, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Reifenrath and C. Müller, “Species-specific and leaf-age dependent effects of ultraviolet radiation on two brassicaceae,” Phytochemistry, vol. 68, no. 6, pp. 875–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Yue, Y. Li, and X. Wang, “Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions,” Environmental and Experimental Botany, vol. 40, no. 3, pp. 187–196, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. U. C. Shukla and P. Kakkar, “Effect of dual stress of ultraviolet-B radiation and cadmium on nutrient uptake of wheat seedlings,” Communications in Soil Science and Plant Analysis, vol. 33, no. 11-12, pp. 1737–1749, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. He, L. K. Huang, W. S. Chow, M. I. Whitecross, and J. M. Anderson, “Effects of supplementary ultraviolet-B radiation on rice and pea plants,” Australian Journal of Plant Physiology, vol. 20, no. 2, pp. 129–142, 1993. View at Publisher · View at Google Scholar
  25. C. F. Musil and S. J. E. Wand, “Differential stimulation of an arid-environment winter ephemeral Dimorphotheca pluvialis (L.) Moench by ultraviolet-B radiation under nutrient limitation,” Plant, Cell and Environment, vol. 17, no. 3, pp. 245–255, 1994. View at Scopus
  26. G. Döhler, R. C. Worrest, I. Biermann, and J. Zink, “Photosynthetic 14CO2 fixation and [15N]-ammonia assimilation during UV-B radiation of Lithodesmium variable,” Physiologia Plantarum, vol. 70, pp. 511–515, 1987.
  27. A. Strid, W. S. Chow, and J. M. Anderson, “Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum,” Biochimica et Biophysica Acta, vol. 1020, no. 3, pp. 260–268, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Correia, E. L. V. Areal, M. S. Torres-Pereira, and J. M. G. Torres-Pereira, “Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions II. physiological and biochemical aspects,” Field Crops Research, vol. 62, no. 2-3, pp. 97–105, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. D. D. Francis, J. S. Schepers, and M. F. Vigil, “Post-anthesis nitrogen loss from corn,” Agronomy Journal, vol. 85, pp. 659–663, 1993.
  30. A. Fangmeier, U. Grüters, P. Högy, B. Vermehren, and H.-J. Jägger, “Effects of elevated CO2, nitrogen supply and troposheric ozone on spring wheat—II. nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn),” Environmental Pollution, vol. 96, pp. 43–59, 1997.
  31. R. C. Muchow, “Nitrogen utilization efficiency in maize and grain sorghum,” Field Crops Research, vol. 56, no. 1-2, pp. 209–216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Costa, S. M. Gallego, and M. L. Tomaro, “Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons,” Plant Science, vol. 162, no. 6, pp. 939–945, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Ren, W. Dai, Z. Xuan, Y. Yao, H. Korpelainen, and C. Li, “The effect of drought and enhanced UV-B radiation on the growth and physiological traits of two contrasting poplar species,” Forest Ecology and Management, vol. 239, no. 1–3, pp. 112–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. M. De La Rosa, R. Julkunen-Tiitto, T. Lehto, and P. J. Aphalo, “Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates,” New Phytologist, vol. 150, no. 1, pp. 121–131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. S. S. J. Buah, J. W. Maranville, A. Traore, and P. J. Bramel-Cox, “Response of nitrogen use efficient sorghums to nitrogen fertilizer,” Journal of Plant Nutrition, vol. 21, no. 11, pp. 2303–2318, 1998. View at Scopus
  36. A. Kamoshita, S. Fukai, R. C. Muchow, and M. Cooper, “Sorghum hybrid differences in grain yield and nitrogen concentration under low soil nitrogen availability. I. Hybrids with similar phenology,” Australian Journal of Agricultural Research, vol. 49, no. 8, pp. 1267–1276, 1998. View at Scopus
  37. I. Rajcan and M. Tollenaar, “Source: sink ratio and leaf senescence in maize: II. nitrogen metabolism during grain filling,” Field Crops Research, vol. 60, no. 3, pp. 255–265, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Swank, F. E. Below, R. J. Lambert, and R. H. Hageman, “Interaction of carbon and nitrogen metabolism in the productivity of maize,” Plant Physiology, vol. 70, pp. 1185–1190, 1982.
  39. S. O. Oikeh, J. G. Kling, and A. E. Okoruwa, “Nitrogen fertilizer management effects on maize grain quality in the west African moist savanna,” Crop Science, vol. 38, no. 4, pp. 1056–1061, 1998. View at Scopus
  40. M. Ahmadi, W. J. Wiebold, and J. E. Beuerlein, “Grain yield and mineral composition of corn as influenced by endosperm type and nitrogen,” Communications in Soil Science and Plant Analysis, vol. 24, no. 17-18, pp. 2409–2426, 1993. View at Scopus
  41. J. Le Gouis, O. Delebarre, D. Beghin, E. Heumez, and P. Pluchard, “Nitrogen uptake and utilisation efficiency of two-row and six-row winter barley cultivars grown at two N levels,” European Journal of Agronomy, vol. 10, no. 2, pp. 73–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Wetselaar and G. D. Farquhar, “Nitrogen losses from tops of plants,” Advances in Agronomy, vol. 33, pp. 263–302, 1980. View at Publisher · View at Google Scholar · View at Scopus