About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 615068, 10 pages
http://dx.doi.org/10.1100/2012/615068
Clinical Study

Human Elimination of Phthalate Compounds: Blood, Urine, and Sweat (BUS) Study

1Faculty of Medicine, University of Alberta, 2935-66 Street, Edmonton, AB, Canada T6K 4C1
2Department of Laboratory Medicine, University of Alberta, Edmonton, AB, Canada T6G 2B7
3Department of Family Medicine, University of Alberta, Edmonton, AB, Canada T6G 2C8
4Environmental Division, A.L.S. Laboratory Group, Edmonton, AB, Canada T6E 5C1

Received 21 July 2012; Accepted 3 October 2012

Academic Editors: A. Basu, W. Gelderblom, J. B. T. Rocha, and E. Shibata

Copyright © 2012 Stephen J. Genuis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. F. Cadogan and C. J. Howick, “Plasticizers,” in Kirk-Othmer Encyclopedia of Chemical Technology, vol. 19, John Wiley & Sons, New York , NY, USA, 1996.
  2. E. S. Kwak, A. Just, R. Whyatt, and R. L. Miller, “Phthalates, pesticides, and bisphenol-a exposure and the development of nonoccupational asthma and allergies: how valid are the links?” The Open Allergy Journal, vol. 2, pp. 45–50, 2009. View at Publisher · View at Google Scholar
  3. W. J. Crinnion, “The CDC fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assists environmental medicine physicians,” Alternative Medicine Review, vol. 15, no. 2, pp. 101–109, 2010. View at Scopus
  4. P. M. Lorz, F. K. Towae, W. Enke, R. Jackh, N. Bhargava, and W. Hillesheim, “Phthalic acid and derivatives,” in Ullmann’s Encyclopedia of Industrial Chemistry Release, vol. 7, pp. 1–36, 2006.
  5. R. Kavlock, K. Boekelheide, R. Chapin, et al., “NTP center for the evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate,” Reproductive Toxicology, vol. 16, no. 5, pp. 529–653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Wittassek, G. A. Wiesmüller, H. M. Koch et al., “Internal phthalate exposure over the last two decades—a retrospective human biomonitoring study,” International Journal of Hygiene and Environmental Health, vol. 210, no. 3-4, pp. 319–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Wittassek, J. Angerer, M. Kolossa-Gehring et al., “Fetal exposure to phthalates—a pilot study,” International Journal of Hygiene and Environmental Health, vol. 212, no. 5, pp. 492–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Wormuth, M. Scheringer, M. Vollenweider, and K. Hungerbühler, “What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?” Risk Analysis, vol. 26, no. 3, pp. 803–824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Silva, D. B. Barr, J. A. Reidy, et al., “Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000,” Environmental Health Perspectives, vol. 112, pp. 331–338, 2004.
  10. R. A. Rudel, D. E. Camann, J. D. Spengler, L. R. Korn, and J. G. Brody, “Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust,” Environmental Science and Technology, vol. 37, no. 20, pp. 4543–4553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Commission, “Restrictions on the marketing and use of certain dangerous substances and preparations (phthalates in toys and childcare articles) directive 2005/84/ EC,” Official Journal of the European Union, vol. L344, pp. 40–43, 2005.
  12. J. J. K. Jaakkola and T. L. Knight, “The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis,” Environmental Health Perspectives, vol. 116, no. 7, pp. 845–853, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. Salam, Y. F. Li, B. Langholz, and F. D. Gilliland, “Early-life environmental risk factors for asthma: findings from the children's health study,” Environmental Health Perspectives, vol. 112, no. 6, pp. 760–765, 2004. View at Scopus
  14. K. Clark, D. MacKay, and K. Yamada, “Phthalate esters,” in The Handbook of Environmental Chemistry, vol. 3, Springer, New York, NY, USA, 2003.
  15. H. Frederiksen, N. E. Skakkebæk, and A. M. Andersson, “Metabolism of phthalates in humans,” Molecular Nutrition and Food Research, vol. 51, no. 7, pp. 899–911, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Agency for Toxic Substances and Disease Registry, Toxicological Profile For Diethyl Phthalate (DEP), Atlanta, Ga, USA, 1995.
  17. Agency for Toxic Substances and Disease Registry, Toxicological Profile For Di(2-Ethylhexyl)Phthalate (DEHP), Atlanta, Ga, USA, 2002.
  18. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Di-N-Butyl Phthalate (DBP), Atlanta, Ga, USA, 2001.
  19. T. J. B. Gray and S. D. Gangolli, “Aspects of the testicular toxicity of phthalate esters,” Environmental Health Perspectives, vol. 65, pp. 229–235, 1986. View at Scopus
  20. J. H. Richburg and K. Boekelheide, “Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes,” Toxicology and Applied Pharmacology, vol. 137, no. 1, pp. 42–50, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. D. Forster, B. G. Lake, and L. V. Thomas, “Studies on the testicular effects and zinc excretion produced by various isomers of monobutyl-o-phthalate in the rat,” Chemico-Biological Interactions, vol. 34, no. 2, pp. 233–238, 1981. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Stroheker, N. Cabaton, G. Nourdin, J. F. Régnier, J. C. Lhuguenot, and M. C. Chagnon, “Evaluation of anti-androgenic activity of di-(2-ethylhexyl)phthalate,” Toxicology, vol. 208, no. 1, pp. 115–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. J. Adibi, R. M. Whyatt, P. L. Williams et al., “Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples,” Environmental Health Perspectives, vol. 116, no. 4, pp. 467–473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. B. Barr, M. J. Silva, K. Kato et al., “Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers,” Environmental Health Perspectives, vol. 111, no. 9, pp. 1148–1151, 2003. View at Scopus
  25. H. M. Koch, H. Drexler, and J. Angerer, “An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population,” International Journal of Hygiene and Environmental Health, vol. 206, pp. 77–83, 2003. View at Publisher · View at Google Scholar
  26. G. Latini, C. De Felice, G. Presta et al., “In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy,” Environmental Health Perspectives, vol. 111, no. 14, pp. 1783–1785, 2003. View at Scopus
  27. A. M. Calafat, A. R. Slakman, M. J. Silva, A. R. Herbert, and L. L. Needham, “Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites,” Journal of Chromatography B, vol. 805, no. 1, pp. 49–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. K. M. Main, G. K. Mortensen, M. M. Kaleva et al., “Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age,” Environmental Health Perspectives, vol. 114, no. 2, pp. 270–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zhu, S. P. Phillips, Y. L. Feng, and X. Yang, “Phthalate esters in human milk: concentration variations over a 6-month postpartum time,” Environmental Science and Technology, vol. 40, no. 17, pp. 5276–5281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. J. Adibi, F. P. Perera, W. Jedrychowski et al., “Prenatal exposures to Phthalates among women in New York and Krakow, Poland,” Environmental Health Perspectives, vol. 111, no. 14, pp. 1719–1722, 2003. View at Scopus
  31. M. D. Shelby, “NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP),” National Toxicology Program-Center for the Evaluation of Risks to Human Reproduction Monograph, no. 18, pp. v, vii-7, II-iii–xiii, 2006.
  32. H. Fromme, L. Gruber, M. Schlummer et al., “Intake of phthalates and di(2-ethylhexyl)adipate: results of the Integrated Exposure Assessment Survey based on duplicate diet samples and biomonitoring data,” Environment International, vol. 33, no. 8, pp. 1012–1020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Petersent and T. Breindahl, “Plasticizers in total diet samples, baby food and infant formulae,” Food Additives and Contaminants, vol. 17, no. 2, pp. 133–141, 2000. View at Scopus
  34. G. K. Mortensen, K. M. Main, A. M. Andersson, H. Leffers, and N. E. Skakkebæk, “Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS),” Analytical and Bioanalytical Chemistry, vol. 382, no. 4, pp. 1084–1092, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Koch, J. Muller, M. Wittassek, and J. Angerer, “Influence of alimentary abstinence on body burden to phthalates,” Epidemiology, vol. 17, no. 6, p. S300, 2006.
  36. Agency for Toxic Substances and Disease Registry, Toxicological Profile for Polybrominated Biphenyls and Polybrominated Diphenyl Ethers (PBBs and PBDEs), Atlanta, Ga, USA, 2004.
  37. R. Green, R. Hauser, A. M. Calafat, et al., “Use of di(2-ehtylhexyl) phthalate containing medical products and urinary levels of mono (2-ethylhexyl) phthalate in neonatal intensive care unit infants,” Environmental Health Perspectives, vol. 113, no. 9, pp. 1222–1225, 2005. View at Publisher · View at Google Scholar
  38. J. Weuve, B. N. Sánchez, A. M. Calafat et al., “Exposure to phthalates in neonatal intensive care unit infants: urinary concentrations of monoesters and oxidative metabolites,” Environmental Health Perspectives, vol. 114, no. 9, pp. 1424–1431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Wittassek and J. Angerer, “Phthalates: metabolism and exposure,” International Journal of Andrology, vol. 31, pp. 131–138, 2008. View at Publisher · View at Google Scholar
  40. K. L. Howdeshell, J. Furr, C. R. Lambright, C. V. Rider, V. S. Wilson, and L. E. Gray Jr., “Cumulative effects of dibutyl phthalate and diethylhexyl phthalate on male rat reproductive tract development: altered fetal steroid hormones and genes,” Toxicological Sciences, vol. 99, pp. 190–202, 2007. View at Publisher · View at Google Scholar
  41. K. L. Howdeshell, V. S. Wilson, J. Furr, et al., “A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner,” Toxicological Sciences, vol. 105, pp. 153–165, 2008. View at Publisher · View at Google Scholar
  42. L. G. Parks, J. S. Ostby, C. R. Lambright, et al., “The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat,” Toxicological Sciences, vol. 58, pp. 339–349, 2000. View at Publisher · View at Google Scholar
  43. E. Mylchreest, M. Sar, D. G. Wallace, and P. M. Foster, “Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate,” Reproductive Toxicology, vol. 16, pp. 19–28, 2002. View at Publisher · View at Google Scholar
  44. K. P. Lehmann, S. Phillips, M. Sar, P. M. Foster, and K. W. Gaido, “Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate,” Toxicological Sciences, vol. 81, pp. 60–68, 2004. View at Publisher · View at Google Scholar
  45. K. Liu, K. P. Lehmann, M. Sar, S. S. Young, and K. W. Gaido, “Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis,” Biology of Reproduction, vol. 73, pp. 180–192, 2005. View at Publisher · View at Google Scholar
  46. S. H. Swan, K. M. Main, F. Liu, et al., “Decrease in anogenital distance among male infants with prenatal phthalate exposure,” Environmental Health Perspectives, vol. 113, pp. 1056–1061, 2005. View at Publisher · View at Google Scholar
  47. I. K. Mahood, C. McKinnell, M. Walker, et al., “Cellular origins of testicular dysgenesis in rats exposed in utero to di(n-butyl) phthalate,” International Journal of Andrology, vol. 29, pp. 148–154, 2006. View at Publisher · View at Google Scholar
  48. S. W. Grande, A. J. Andrade, C. E. Talsness, K. Grote, and I. Chahoud, “A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development,” Toxicological Sciences, vol. 91, pp. 247–254, 2006. View at Publisher · View at Google Scholar
  49. S. W. Grande, A. J. Andrade, C. E. Talsness, et al., “A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult female offspring rats,” Toxicology, vol. 229, pp. 114–122, 2007. View at Publisher · View at Google Scholar
  50. L. E. Gray Jr., J. Laskey, and J. Ostby, “Chronic di-n-butyl phthalate exposure in rats reduces fertility and alters ovarian function during pregnancy in female Long Evans hooded rats,” Toxicological Sciences, vol. 93, pp. 189–195, 2006. View at Publisher · View at Google Scholar
  51. B. J. Davis, R. R. Maronpot, and J. J. Heindel, “Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats,” Toxicology and Applied Pharmacology, vol. 128, pp. 216–223, 1994. View at Publisher · View at Google Scholar
  52. R. W. Tyl, C. J. Price, M. C. Marr, and C. A. Kimmel, “Developmental toxicity evaluation of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice,” Fundamental and Applied Toxicology, vol. 10, pp. 395–412, 1988. View at Publisher · View at Google Scholar
  53. S. M. Duty, A. M. Calafat, M. J. Silva, et al., “The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters,” Journal of Andrology, vol. 25, pp. 293–302, 2004.
  54. L. Cobellis, G. Latini, C. De Felice, et al., “High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis,” Human Reproduction, vol. 18, pp. 1512–1515, 2003. View at Publisher · View at Google Scholar
  55. I. Colon, D. Caro, C. J. Bourdony, and O. Rosario, “Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development,” Environmental Health Perspectives, vol. 108, pp. 895–900, 2000.
  56. S. D. Gangolli, “Testicular effects of phthalate esters,” Environmental Health Perspectives, vol. 45, pp. 77–84, 1982. View at Publisher · View at Google Scholar
  57. L. A. Dostal, R. E. Chapin, S. A. Stefanski, M. W. Harris, and B. A. Schwetz, “Testicular toxicity and reduced Sertoli cell numbers in neonatal rats by di(2-ethylhexyl)phthalate and the recovery of fertility as adults,” Toxicology and Applied Pharmacology, vol. 95, pp. 104–121, 1988. View at Publisher · View at Google Scholar
  58. C. B. Shaffer, C. P. Carpenter, and H. R. J. Smyth, “Acute and subacute toxicity of di-(2-ethylhexyl) phthalate with note upon its metabolism,” The Journal of Industrial Hygiene and Toxicology, vol. 27, pp. 130–135, 1945.
  59. J. Lee, J. H. Richburg, E. B. Shipp, M. L. Meistrich, and K. Boekelheide, “The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis,” Endocrinology, vol. 140, pp. 852–858, 1999. View at Publisher · View at Google Scholar
  60. H. B. Jones, D. A. Garside, R. Liu, and J. C. Roberts, “The influence of phthalate esters on Leydig cell structure and function in vitro and in vivo,” Experimental and Molecular Pathology, vol. 58, no. 3, pp. 179–193, 1993. View at Publisher · View at Google Scholar
  61. B. T. Akingbemi, R. Ge, G. R. Klinefelter, B. R. Zirkin, and M. P. Hardy, “Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 3, pp. 775–780, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. A. J. Martino-Andrade and I. Chahoud, “Reproductive toxicity of phthalate esters,” Molecular Nutrition and Food Research, vol. 54, no. 1, pp. 148–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. L. E. Gray Jr., J. Ostby, J. Furr, M. Price, D. N. R. Veeramachaneni, and L. Parks, “Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat,” Toxicological Sciences, vol. 58, no. 2, pp. 350–365, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. A. J. M. Andrade, S. W. Grande, C. E. Talsness et al., “A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): effects on androgenic status, developmental landmarks and testicular histology in male offspring rats,” Toxicology, vol. 225, no. 1, pp. 64–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. L. E. Gray Jr., C. Wolf, C. Lambright et al., “Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat,” Toxicology and Industrial Health, vol. 15, no. 1-2, pp. 94–118, 1999. View at Scopus
  66. European Food and Safety Authority, “Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (afc) on a request from the commission related to bis(2-ethylhexyl)phthalate (DEHP) for use in food contact materials,” The European Food and Safety Authority Journal, vol. 243, pp. 1–20, 2005.
  67. J. C. Lamb, R. E. Chapin, and J. Teague, “Reproductive effects of four phthalic acid esters in the mouse,” Toxicology and Applied Pharmacology, vol. 88, no. 2, pp. 255–269, 1987. View at Scopus
  68. World Health Organization, Global Assessment of the State-of-the-Science of Endocrine Disruptors, Geneva, Switzerland, 2002.
  69. S. M. Duty, M. J. Silva, D. B. Barr et al., “Phthalate exposure and human parameters,” Epidemiology, vol. 14, no. 3, pp. 269–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Hauser, J. D. Meeker, S. Duty, M. J. Silva, and A. M. Calafat, “Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites,” Epidemiology, vol. 17, no. 6, pp. 682–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. B. S. Reddy, R. Rozati, B. V. R. Reddy, and N. V. V. S. S. Raman, “Association of phthalate esters with endometriosis in Indian women,” An International Journal of Obstetrics and Gynaecology, vol. 113, no. 5, pp. 515–520, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. L. P. Huang, C. C. Lee, P. C. Hsu, and T. S. Shih, “The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air,” Fertility and Sterility, vol. 96, no. 1, pp. 90–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. R. W. Stahlhut, E. van Wijngaarden, T. D. Dye, S. Cook, and S. H. Swan, “Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males,” Environmental Health Perspectives, vol. 115, no. 6, pp. 876–882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. E. E. Hatch, J. W. Nelson, M. M. Qureshi et al., “Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002,” Environmental Health, vol. 7, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. J. K. Jaakkola, P. K. Verkasalo, and N. Jaakkola, “Plastic wall materials in the home and respiratory health in young children,” American Journal of Public Health, vol. 90, no. 5, pp. 797–799, 2000. View at Scopus
  76. J. J. K. Jaakkola, L. Øie, P. Nafstad, G. Botten, S. O. Samuelsen, and P. Magnus, “Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway,” American Journal of Public Health, vol. 89, no. 2, pp. 188–192, 1999. View at Scopus
  77. C. G. Bornehag, J. Sundell, S. Bonini et al., “Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998–2000) on dampness and mite exposure in buildings and health effects,” Indoor Air, vol. 14, no. 4, pp. 243–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. C. G. Bornehag, J. Sundell, C. J. Weschler et al., “The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study,” Environmental Health Perspectives, vol. 112, no. 14, pp. 1393–1397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Kolarik, K. Naydenov, M. Larsson, C. G. Bornehag, and J. Sundell, “The association between phthalates in dust and allergic diseases among Bulgarian children,” Environmental Health Perspectives, vol. 116, no. 1, pp. 98–103, 2008. View at Scopus
  80. M. J. Silva, E. Samandar, J. L. Preau, J. A. Reidy, L. L. Needham, and A. M. Calafat, “Automated solid-phase extraction and quantitative analysis of 14 phthalate metabolites in human serum using isotope dilution-high-performance liquid chromatography-tandem mass spectrometry,” Journal of Analytical Toxicology, vol. 29, no. 8, pp. 819–824, 2005. View at Scopus
  81. M. J. Silva, N. A. Malek, C. C. Hodge et al., “Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry,” Journal of Chromatography B, vol. 789, no. 2, pp. 393–404, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. W. J. Cohn, J. J. Boylan, and R. V. Blanke, “Treatment of chlordecone (Kepone) toxicity with cholestyramine. Results of a controlled clinical trial,” New England Journal of Medicine, vol. 298, no. 5, pp. 243–248, 1978. View at Scopus
  83. S. J. Genuis, “Elimination of persistent toxicants from the human body,” Human and Experimental Toxicology, vol. 30, no. 1, pp. 3–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. R. J. Jandacek and P. Tso, “Factors affecting the storage and excretion of toxic lipophilic xenobiotics,” Lipids, vol. 36, no. 12, pp. 1289–1305, 2001. View at Scopus
  85. T. G. Redgrave, P. Wallace, R. J. Jandacek, and P. Tso, “Treatment with a dietary fat substitute decreased Arochlor 1254 contamination in an obese diabetic male,” Journal of Nutritional Biochemistry, vol. 16, no. 6, pp. 383–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. G. A. Moser and M. S. McLachlan, “A non-absorbable dietary fat substitute enhances elimination of persistent lipophilic contaminants in humans,” Chemosphere, vol. 39, no. 9, pp. 1513–1521, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. G. H. Ross and M. C. Sternquist, “Methamphetamine exposure and chronic illness in police officers: significant improvement with sauna-based detoxification therapy,” Toxicology and Industrial Health, vol. 28, no. 8, pp. 758–768, 2012. View at Publisher · View at Google Scholar
  88. S. J. Genuis, D. Birkholz, I. Rodushkin, and S. Beesoon, “Blood, urine, and sweat (BUS) study: monitoring and elimination of bioaccumulated toxic elements,” Archives of Environmental Contamination and Toxicology, vol. 61, no. 2, pp. 344–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. W. J. Crinnion, “Sauna as a valuable clinical tool for cardiovascular, autoimmune, toxicant- induced and other chronic health problems,” Alternative Medicine Review, vol. 16, pp. 215–225, 2011.
  90. D. W. Schnare and M. G. Shields, “Body burden reductions of PCBs, PBBs and chlorinated pesticides in human subjects,” Ambio, vol. 13, no. 5-6, pp. 378–380, 1984. View at Scopus
  91. S. J. Genuis, S. Beesoon, D. Birkholz, and R. A. Lobo, “Human excretion of bisphenol A: blood, urine, and sweat (BUS) study,” Journal of Environmental and Public Health, vol. 2012, Article ID 185731, 10 pages, 2012. View at Publisher · View at Google Scholar
  92. P. A. Wyss, S. Muhlebach, and M. H. Bickel, “Pharmacokinetics of 2,2',4,4',5,5'-hexachlorobiphenyl (6-CB) in rats with decreasing adipose tissue mass. I. Effects of restricting food intake two weeks after administration of 6-CB,” Drug Metabolism and Disposition, vol. 10, no. 6, pp. 657–661, 1982. View at Scopus