About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 692746, 13 pages
http://dx.doi.org/10.1100/2012/692746
Research Article

Exergetic Assessment for Resources Input and Environmental Emissions by Chinese Industry during 1997–2006

1School of Management, China University of Mining and Technology (Beijing), Beijing 100083, China
2State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China
3Shenhua International Trading Co. Ltd., Beijing 100011, China
4Pingxiang College, Jiangxi Province, Pingxiang 337000, China

Received 20 June 2012; Accepted 10 July 2012

Academic Editors: C. Bin and C. Zhan-Ming

Copyright © 2012 Bo Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper presents an overview of the resources use and environmental impact of the Chinese industry during 1997–2006. For the purpose of this analysis the thermodynamic concept of exergy has been employed both to quantify and aggregate the resources input and the environmental emissions arising from the sector. The resources input and environmental emissions show an increasing trend in this period. Compared with 47568.7 PJ in 1997, resources input in 2006 increased by 75.4% and reached 83437.9 PJ, of which 82.5% came from nonrenewable resources, mainly from coal and other energy minerals. Furthermore, the total exergy of environmental emissions was estimated to be 3499.3 PJ in 2006, 1.7 times of that in 1997, of which 93.4% was from GHG emissions and only 6.6% from “three wastes” emissions. A rapid increment of the nonrenewable resources input and GHG emissions over 2002–2006 can be found, owing to the excessive expansion of resource- and energy-intensive subsectors. Exergy intensities in terms of resource input intensity and environmental emission intensity time-series are also calculated, and the trends are influenced by the macroeconomic situation evidently, particularly by the investment-derived economic development in recent years. Corresponding policy implications to guide a more sustainable industry system are addressed.