About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 761909, 10 pages
http://dx.doi.org/10.1100/2012/761909
Review Article

Genetic Aspects of Gastric Cancer Instability

Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia

Received 1 November 2011; Accepted 30 November 2011

Academic Editor: Abbes Belkhiri

Copyright © 2012 Petra Hudler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Nobili, L. Bruno, I. Landini, et al., “Genomic and genetic alterations influence the progression of gastric cancer,” World Journal of Gastroenterology, vol. 17, no. 3, pp. 290–299, 2011.
  3. K. Yamashita, S. Sakuramoto, and M. Watanabe, “Genomic and epigenetic profiles of gastric cancer: potential diagnostic and therapeutic applications,” Surgery Today, vol. 41, no. 1, pp. 24–38, 2011. View at Publisher · View at Google Scholar
  4. T. Matysiak-Budnik and F. Mégraud, “Helicobacter pylori infection and gastric cancer,” European Journal of Cancer, vol. 42, no. 6, pp. 708–716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Ottini, M. Falchetti, R. Lupi et al., “Patterns of genomic instability in gastric cancer: clinical implications and perspectives,” Annals of Oncology, vol. 17, supplement 7, pp. vii97–vii102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Zheng, L. Wang, J. Ajani, and K. Xie, “Molecular basis of gastric cancer development and progression,” Gastric Cancer, vol. 7, no. 2, pp. 61–77, 2004. View at Scopus
  7. K. D. Crew and A. I. Neugut, “Epidemiology of gastric cancer,” World Journal of Gastroenterology, vol. 12, no. 3, pp. 354–362, 2006. View at Scopus
  8. J. P. Hamilton and S. J. Meltzer, “A review of the genomics of gastric cancer,” Clinical Gastroenterology and Hepatology, vol. 4, no. 4, pp. 416–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. Panani, “Cytogenetic and molecular aspects of gastric cancer: clinical implications,” Cancer Letters, vol. 266, no. 2, pp. 99–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. N. Milne, F. Carneiro, C. O'Morain, and G. J. A. Offerhaus, “Nature meets nurture: molecular genetics of gastric cancer,” Human Genetics, vol. 126, no. 5, pp. 615–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kawauchi, T. Furuay, T. Uchiyama et al., “Genomic instability and DNA ploidy are linked to DNA copy number aberrations of 8p23 and 22q11.23 in gastric cancers,” International Journal of Molecular Medicine, vol. 26, no. 3, pp. 333–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. T. E. Buffart, M. Louw, N. C. Van Grieken et al., “Gastric cancers of Western European and African patients show different patterns of genomic instability,” BMC Medical Genomics, vol. 4, article 7, 2011. View at Publisher · View at Google Scholar
  13. S. A. Martin, M. Hewish, C. J. Lord, and A. Ashworth, “Genomic instability and the selection of treatments for cancer,” Journal of Pathology, vol. 220, no. 2, pp. 281–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. I. Grabsch, J. M. Askham, E. E. Morrison et al., “Expression of BUB1 protein in gastric cancer correlates with the histological subtype, but not with DNA ploidy or microsatellite instability,” Journal of Pathology, vol. 202, no. 2, pp. 208–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. T. E. Buffart, B. Carvalho, T. Mons et al., “DNA copy number profiles of gastric cancer precursor lesions,” BMC Genomics, vol. 8, article 345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. U. Kang, J. J. Kang, K. C. Kwon, et al., “Genetic alterations in primary gastric carcinomas correlated with clinicopathological variables by array comparative genomic hybridization,” Journal of Korean Medical Science, vol. 21, no. 4, pp. 656–665, 2006. View at Scopus
  17. K. Morohara, K. Nakao, Y. Tajima et al., “Analysis by comparative genomic hybridization of gastric cancer with peritoneal dissemination and/or positive peritoneal cytology,” Cancer Genetics and Cytogenetics, vol. 161, no. 1, pp. 57–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Weiss, E. J. Kuipers, C. Postma et al., “Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival,” Cellular Oncology, vol. 26, no. 5-6, pp. 307–317, 2004. View at Scopus
  19. T. E. Buffart, B. Carvalho, E. Hopmans et al., “Gastric cancers in young and elderly patients show different genomic profiles,” Journal of Pathology, vol. 211, no. 1, pp. 45–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Varis, B. van Rees, M. Weterman, et al., “DNA copy number changes in young gastric cancer patients with special reference to chromosome 19,” British Journal of Cancer, vol. 88, no. 12, pp. 1914–1919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Tsukamoto, T. Uchida, S. Karnan et al., “Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer,” Journal of Pathology, vol. 216, no. 4, pp. 471–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. French, G. Petroni, S. N. Thibideau et al., “Allelic imbalance of 8p indicates poor survival in gastric cancer,” Journal of Molecular Diagnostics, vol. 6, no. 3, pp. 243–252, 2004. View at Scopus
  23. B. Gazvoda, R. Juvan, I. Zupanič-Pajnič et al., “Genetic changes in Slovenian patients with gastric adenocarcinoma evaluated in terms of microsatellite DNA,” European Journal of Gastroenterology and Hepatology, vol. 19, no. 12, pp. 1082–1089, 2007. View at Publisher · View at Google Scholar
  24. S. H. Koo, T. E. Jeong, J. U. Kang, K. Chul Kwon, J. Woo Park, and S. Moo Noh, “Prognostic implications for gastric carcinoma based on loss of heterozygosity genotypes correlation with clinicopathologic variables,” Cancer Genetics and Cytogenetics, vol. 153, no. 1, pp. 26–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Hong, E. J. Jeon, J. H. Oh, E. J. Seo, S. W. Choi, and M. G. Rhyu, “The gene-reduction effect of chromosomal losses detected in gastric cancers,” BMC Gastroenterology, vol. 10, article 138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Karaman, M. E. Kabalar, D. N. Binic, C. Öztürk, and I. Pirim, “Genetic alterations in gastric precancerous lesions,” Genetic Counseling, vol. 21, no. 4, pp. 439–450, 2010.
  27. G. Tamura, “Alterations of tumor suppressor and tumor-related genes in the development and progression of gastric cancer,” World Journal of Gastroenterology, vol. 12, no. 2, pp. 192–198, 2006. View at Scopus
  28. D. I. P. Castro, D. G. Cárcer, and M. Malumbres, “A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy,” Carcinogenesis, vol. 28, no. 5, pp. 899–912, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Gollin, “Mechanisms leading to chromosomal instability,” Seminars in Cancer Biology, vol. 15, no. 1, pp. 33–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Duesberg, R. Li, D. Rasnick et al., “Aneuploidy precedes and segregates with chemical carcinogenesis,” Cancer Genetics and Cytogenetics, vol. 119, no. 2, pp. 83–93, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Duesberg and D. Rasnick, “Aneuploidy, the somatic mutation that makes cancer a species of its own,” Cell Motility and the Cytoskeleton, vol. 47, no. 2, pp. 81–107, 2000.
  32. A. Matsuoka, K. Matsuura, H. Sakamoto, M. Hayashi, and T. Sofuni, “Spindle disturbances induced by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in a Chinese hamster cell line (V79-MZ) and the stability of the numerical chromosome aberrations that follow,” Mutation Research, vol. 419, no. 1–3, pp. 1–12, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Pasupathi, G. Saravanan, P. Chinnaswamy, and G. Bakthavathsalam, “Effect of chronic smoking on lipid peroxidation and antioxidant status in gastric carcinoma patients,” Indian Journal of Gastroenterology, vol. 28, no. 2, pp. 65–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. T. L. Schmit and N. Ahmad, “Regulation of mitosis via mitotic kinases: new opportunities for cancer management,” Molecular Cancer Therapeutics, vol. 6, no. 7, pp. 1920–1931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Duesberg, R. Li, A. Fabarius, and R. Hehlmann, “The chromosomal basis of cancer,” Cellular Oncology, vol. 27, no. 5-6, pp. 293–318, 2005. View at Scopus
  36. F. Iovino, L. Lentini, A. Amato, and A. Di Leonardo, “RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts,” Molecular Cancer, vol. 5, article 38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Ando, Y. Kakeji, H. Kitao et al., “High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer,” Cancer Science, vol. 101, no. 3, pp. 639–645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Enjoji, S. Iida, H. Sugita et al., “BubR1 and AURKB overexpression are associated with a favorable prognosis in gastric cancer,” Molecular Medicine Reports, vol. 2, no. 4, pp. 589–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Osaki, T. Inoue, S. Yamaguchi et al., “MAD1 (mitotic arrest deficiency 1) is a candidate for a tumor suppressor gene in human stomach,” Virchows Archiv, vol. 451, no. 4, pp. 771–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Wang, F. Yin, Y. Du et al., “Depression of MAD2 inhibits apoptosis and increases proliferation and multidrug resistance in gastric cancer cells by regulating the activation of phosphorylated survivin,” Tumor Biology, vol. 31, no. 3, pp. 225–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. A. Dar, A. Zaika, M. B. Piazuelo et al., “Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions,” Cancer, vol. 112, no. 8, pp. 1688–1698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. A. Dar, A. Belkhiri, and W. El-Rifai, “The aurora kinase A regulates GSK-3β in gastric cancer cells,” Oncogene, vol. 28, no. 6, pp. 866–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Anand, S. Penrhyn-Lowe, and A. R. Venkitaraman, “AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol,” Cancer Cell, vol. 3, no. 1, pp. 51–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Hutterer, D. Berdnik, F. Wirtz-Peitz, et al., “Mitotic activation of the kinase Aurora-A requires its binding partner Bora,” Developmental Cell, vol. 11, no. 2, pp. 147–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Hudler, S. Repše, R. Juvan, and R. Komel, “A genomic approach to investigate expression profiles in Slovenian patients with gastric cancer,” Oncology Letters, vol. 2, no. 5, pp. 1003–1014, 2011. View at Publisher · View at Google Scholar
  46. S. Kanaji, H. Saito, S. Tsujitani et al., “Expression of polo-like kinase 1 (PLK1) protein predicts the survival of patients with gastric carcinoma,” Oncology, vol. 70, no. 2, pp. 126–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Rossi, C. Klersy, R. Manca, O. Zuffardi, and E. Solcia, “Correlation between genomic alterations assessed by array comparative genomic hybridization, prognostically informative histologic subtype, stage, and patient survival in gastric cancer,” Human Pathology, vol. 42, no. 12, pp. 1937–1945, 2011. View at Publisher · View at Google Scholar
  48. C. Y. Wen, T. Nakayama, A. P. Wang et al., “Expression of pituitary tumor transforming gene in human gastric carcinoma,” World Journal of Gastroenterology, vol. 10, no. 4, pp. 481–483, 2004. View at Scopus
  49. J. L. Shepard, J. F. Amatruda, D. Finkelstein et al., “A mutation in separase causes genome instability and increased susceptibility to epithelial cancer,” Genes and Development, vol. 21, no. 1, pp. 55–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Tomonaga and F. Nomura, “Chromosome instability and kinetochore dysfunction,” Histology and Histopathology, vol. 22, no. 2, pp. 191–197, 2007. View at Scopus
  51. S. A. Frank, “Genetic predisposition to cancer—insights from population genetics,” Nature Reviews Genetics, vol. 5, no. 10, pp. 764–772, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Guo, S. S. Lee, W. H. Ng et al., “Global molecular dysfunctions in gastric cancer revealed by an integrated analysis of the phosphoproteome and transcriptome,” Cellular and Molecular Life Sciences, vol. 68, no. 11, pp. 1983–2002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Palli, S. Polidoro, M. D'Errico et al., “Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer,” Mutagenesis, vol. 25, no. 6, pp. 569–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. K. Kim, I. J. Choi, C. G. Kim et al., “A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients,” PLoS ONE, vol. 6, no. 2, article e16694, 2011. View at Publisher · View at Google Scholar
  55. K. Shinmura, M. Goto, M. Suzuki et al., “Reduced expression of MUTYH with suppressive activity against mutations caused by 8-hydroxyguanine is a novel predictor of a poor prognosis in human gastric cancer,” Journal of Pathology, vol. 225, no. 3, pp. 414–423, 2011. View at Publisher · View at Google Scholar
  56. P. Wang, J. T. Tang, Y. S. Peng, X. Y. Chen, Y. J. Zhang, and J. Y. Fang, “XRCC1 downregulated through promoter hypermethylation is involved in human gastric carcinogenesis,” Journal of Digestive Diseases, vol. 11, no. 6, pp. 343–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Wu, A. Shirahata, K. Sakuraba et al., “Down-regulation of Mus81 as a potential marker for the malignancy of gastric cancer,” Anticancer Research, vol. 30, no. 12, pp. 5011–5014, 2010.
  58. B. Kang, R. F. Guo, X. H. Tan, M. Zhao, Z. B. Tang, and Y. Y. Lu, “Expression status of ataxia-telangiectasia-mutated gene correlated with prognosis in advanced gastric cancer,” Mutation Research, vol. 638, no. 1-2, pp. 17–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Kang, R.-F. Guo, X.-H. Tan, M. Zhao, Z.-B. Tang, and Y.-Y. Lu, “Expression status of ataxia-telangiectasia-mutated gene correlated with prognosis in advanced gastric cancer,” Mutation Research, vol. 638, no. 1-2, pp. 17–25, 2008. View at Publisher · View at Google Scholar
  60. T. Tahara, T. Shibata, M. Nakamura et al., “Effect of genetic polymorphisms related to DNA repair and the xenobiotic pathway on the prognosis and survival of gastric cancer patients,” Anticancer Research, vol. 31, no. 2, pp. 705–710, 2011.
  61. T. Tahara, T. Shibata, M. Nakamura et al., “Association between genetic polymorphisms related to DNA repair or xenobiotic pathways and gastric premalignant conditions,” Anticancer Research, vol. 31, no. 4, pp. 1459–1465, 2011.
  62. K. Ott, P. S. Rachakonda, B. Panzram et al., “DNA repair gene and MTHFR gene polymorphisms as prognostic markers in locally advanced adenocarcinoma of the esophagus or stomach treated with cisplatin and 5-fluorouracil-based neoadjuvant chemotherapy,” Annals of Surgical Oncology, vol. 18, no. 9, pp. 2688–2698, 2011. View at Publisher · View at Google Scholar
  63. S. L. Park, D. Bastani, B. Y. Goldstein et al., “Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers,” Carcinogenesis, vol. 31, no. 7, pp. 1264–1271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Yuan, S. Deng, M. Chen et al., “Association of DNA repair gene XRCC1 and XPD polymorphisms with genetic susceptibility to gastric cancer in a Chinese population,” Cancer Epidemiology, vol. 35, no. 2, pp. 170–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. M. A. Malik, S. A. Zargar, and B. Mittal, “Lack of influence of DNA Repair Gene OGG1 Codon 326 polymorphisms of gastric cancer risk in the Kashmir valley,” Asian Pacific Journal of Cancer Prevention, vol. 11, no. 1, pp. 165–168, 2010. View at Scopus
  66. E. Canbay, B. Agachan, M. Gulluoglu et al., “Possible associations of APE1 polymorphism with susceptibility and HOGG1 polymorphism with prognosis in gastric cancer,” Anticancer Research, vol. 30, no. 4, pp. 1359–1364, 2010. View at Scopus
  67. G. Corso, D. Marrelli, C. Pedrazzani et al., “Gastric cardia carcinoma is associated with the promoter -77T>C gene polymorphism of X-Ray Cross-Complementing Group 1 (XRCC1),” Journal of Gastrointestinal Surgery, vol. 13, no. 12, pp. 2233–2238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. W. Yasui, N. Oue, P. P. Aung, S. Matsumura, M. Shutoh, and H. Nakayama, “Molecular-pathological prognostic factors of gastric cancer: a review,” Gastric Cancer, vol. 8, no. 2, pp. 86–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. I. M. Toller, K. J. Neelsen, M. Steger et al., “Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 36, pp. 14944–14949, 2011. View at Publisher · View at Google Scholar
  70. H. Y. Baek, J. W. Lim, H. Kim et al., “Oxidative-stress-related proteome changes in Helicobacter pylori-infected human gastric mucosa,” Biochemical Journal, vol. 379, no. 2, pp. 291–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Z. Ding, A. M. O'Hara, T. L. Denning et al., “Helicobacter pylori and H2O2 increase AP endonuclease-1/redox factor-1 expression in human gastric epithelial cells,” Gastroenterology, vol. 127, no. 3, pp. 845–858, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Farinati, R. Cardin, V. M. Russo, G. Busatto, M. Franco, and M. Rugge, “Helicobacter pylori CagA status, mucosal oxidative damage and gastritis phenotype: a potential pathway to cancer?” Helicobacter, vol. 8, no. 3, pp. 227–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. A. M. Machado, C. Figueiredo, E. Touati et al., “Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells,” Clinical Cancer Research, vol. 15, no. 9, pp. 2995–3002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. B. L. Slomiany and A. Slomiany, “Helicobacter pylori Induces Disturbances in Gastric Mucosal Akt Activation through Inducible Nitric Oxide Synthase-Dependent S-Nitrosylation: effect of Ghrelin,” ISRN Gastroenterol, vol. 2011, Article ID 308727, 8 pages, 2011. View at Publisher · View at Google Scholar
  75. M. Jaiswal, N. F. Larusso, and G. J. Gores, “Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis,” American Journal of Physiology, vol. 281, no. 3, pp. G626–G634, 2001. View at Scopus
  76. M. S. Ladeira, M. A. Rodrigues, D. M. Salvadori, D. M. M. Queiroz, and D. V. Freire-Maia, “DNA damage in patients infected by Helicobacter pylori,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 4, pp. 631–637, 2004. View at Scopus
  77. E. M. El-Omar, C. S. Rabkin, M. D. Gammon et al., “Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms,” Gastroenterology, vol. 124, no. 5, pp. 1193–1201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Hudler, M. Vogelsang, and R. Komel, “Genetic instability in gastric cancer,” in Gastric Carcinoma—Molecular Aspects and Current Advances, M. Lofty, Ed., p. 345, InTech, Rijeka, Croatia, 2010.
  79. M. R. Amieva and E. M. El-Omar, “Host-Bacterial Interactions in Helicobacter pylori Infection,” Gastroenterology, vol. 134, no. 1, pp. 306–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. B. Buermeyer, S. M. Deschênes, S. M. Baker, and R. M. Liskay, “Mammalian DNA mismatch repair,” Annual Review of Genetics, vol. 33, pp. 533–564, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Ottini, M. Falchetti, C. Saieva et al., “MRE11 expression is impaired in gastric cancer with microsatellite instability,” Carcinogenesis, vol. 25, no. 12, pp. 2337–2343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Bacani, R. Zwingerman, N. Di Nicola et al., “Tumor microsatellite instability in early onset gastric cancer,” Journal of Molecular Diagnostics, vol. 7, no. 4, pp. 465–477, 2005. View at Scopus
  83. P. Hudler, K. Voulk, M. Liovic, S. Repse, R. Juvan, and R. Komel, “Mutations in the hMLH1 gene in Slovenian patients with gastric carcinoma,” Clinical Genetics, vol. 65, no. 5, pp. 405–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. M. S. Wu, C. W. Lee, C. T. Shun et al., “Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes,” Genes Chromosomes and Cancer, vol. 27, no. 4, pp. 403–411, 2000. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Yamamoto, J. Perez-Piteira, T. Yoshida et al., “Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features,” Gastroenterology, vol. 116, no. 6, pp. 1348–1357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. B. J. Iacopetta, R. Soong, A. K. House, and R. Hamelin, “Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-β type II receptor, IGFII receptor, and BAX genes,” Journal of Pathology, vol. 187, no. 4, pp. 428–432, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. D. H. Kang, M. E. Han, M. H. Song et al., “The role of hedgehog signaling during gastric regeneration,” Journal of Gastroenterology, vol. 44, no. 5, pp. 372–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Katoh and M. Katoh, “WNT antagonist, SFRP1, is Hedgehog signaling target,” International Journal of Molecular Medicine, vol. 17, no. 1, pp. 171–175, 2006. View at Scopus
  89. C. H. Ooi, T. Ivanova, J. Wu et al., “Oncogenic pathway combinations predict clinical prognosis in gastric cancer,” PLoS Genetics, vol. 5, no. 10, Article ID e1000676, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Tahara, “Abnormal growth factor/cytokine network in gastric cancer,” Cancer Microenvironment, vol. 1, no. 1, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. W. K. Wu, C. H. Cho, C. W. Lee et al., “Dysregulation of cellular signaling in gastric cancer,” Cancer Letters, vol. 295, no. 2, pp. 144–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Garcáa, J. M. del Casar, M. D. Corte, et al., “Epidermal growth factor receptor and c-erbB-2 contents in unresectable (UICC R1 or R2) gastric cancer,” International Journal of Biological Markers, vol. 18, no. 3, pp. 200–206, 2003. View at Scopus
  93. I. García, F. Vizoso, A. Martín et al., “Clinical significance of the epidermal growth factor receptor and HER2 receptor in resectable gastric cancer,” Annals of Surgical Oncology, vol. 10, no. 3, pp. 234–241, 2003. View at Publisher · View at Google Scholar
  94. S. Gencer, G. Şen, G. Doğusoy, A. K. Belli, M. Paksoy, and M. B.I. Yazicioǧlu, “β-catenin-independent noncanonical Wnt pathway might be induced in gastric cancers,” Turkish Journal of Gastroenterology, vol. 21, no. 3, pp. 224–230, 2010. View at Publisher · View at Google Scholar
  95. M. Hayashi, M. Inokuchi, Y. Takagi et al., “High expression of HER3 is associated with a decreased survival in gastric cancer,” Clinical Cancer Research, vol. 14, no. 23, pp. 7843–7849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Katoh, H. Kirikoshi, H. Terasaki, and K. Shiokawa, “WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT-β-catenin-TCF signaling pathway,” Biochemical and Biophysical Research Communications, vol. 289, no. 5, pp. 1093–1098, 2001. View at Publisher · View at Google Scholar
  97. M. A. Kim, H. S. Lee, H. E. Lee, Y. K. Jeon, H. K. Yang, and W. H. Kim, “EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number,” Histopathology, vol. 52, no. 6, pp. 738–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. B. Liang, S. Wang, X. G. Zhu, Y. X. Yu, Z. R. Cui, and Y. Z. Yu, “Increased expression of mitogen-activated protein kinase and its upstream regulating signal in human gastric cancer,” World Journal of Gastroenterology, vol. 11, no. 5, pp. 623–628, 2005. View at Scopus
  99. S. Nabais, J. C. Machado, C. Lopes, et al., “Patterns of β-catenin expression in gastric carcinoma: clinicopathological relevance and mutation analysis,” International Journal of Surgical Pathology, vol. 11, no. 1, pp. 1–9, 2003. View at Scopus
  100. M. S. Song, Y. K. Park, J. H. Lee, and K. Park, “Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-ε/ERK/AP-1 signaling cascade,” Cancer Research, vol. 61, no. 22, pp. 8322–8330, 2001. View at Scopus
  101. Y. Sun, X. Gao, J. Liu et al., “Differential Notchl and Notch2 expression and frequent activation of Notch signaling in gastric cancers,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 4, pp. 451–458, 2011.
  102. S. Velho, G. Corso, C. Oliveíra, and R. Seruca, “KRAS signaling pathway alterations in microsatellite unstable gastrointestinal cancers,” Advances in Cancer Research, vol. 109, pp. 123–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. K. Wang, C. F. Gao, T. Yun et al., “Assessment of ERBB2 and EGFR gene amplification and protein expression in gastric carcinoma by immunohistochemistry and fluorescence in situ hybridization,” Molecular Cytogenetics, vol. 4, no. 1, article 14, 2011. View at Publisher · View at Google Scholar
  104. L. H. Wang, Y. L. Choi, X. Y. Hua et al., “Increased expression of sonic hedgehog and altered methylation of its promoter region in gastric cancer and its related lesions,” Modern Pathology, vol. 19, no. 5, pp. 675–683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Y. Lee, H. S. Han, K. Y. Lee et al., “Sonic hedgehog expression in gastric cancer and gastric adenoma,” Oncology Reports, vol. 17, no. 5, pp. 1051–1055, 2007. View at Scopus
  106. Y.-C. Tseng, Y.-H. Tsai, M.-J. Tseng et al., “Notch2-induced COX-2 expression enhancing gastric cancer progression,” Molecular Carcinogenesis. In press. View at Publisher · View at Google Scholar
  107. M. Soutto, A. Belkhiri, M. B. Piazuelo et al., “Loss of TFF1 is associated with activation of NF-κB-mediated inflammation and gastric neoplasia in mice and humans,” Journal of Clinical Investigation, vol. 121, no. 5, pp. 1753–1767, 2011. View at Publisher · View at Google Scholar
  108. N. Sasaki, T. Morisaki, K. Hashizume et al., “Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human gastric carcinoma tissue,” Clinical Cancer Research, vol. 7, no. 12, pp. 4136–4142, 2001. View at Scopus
  109. P. I. Hsu, H. L. Hsieh, J. Lee et al., “Loss of RUNX3 expression correlates with differentiation, nodal metastasis, and poor prognosis of gastric cancer,” Annals of Surgical Oncology, vol. 16, no. 6, pp. 1686–1694, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. S. A. Bleuming, L. L. Kodach, M. J. Garcia Leon et al., “Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach,” Journal of Pathology, vol. 209, no. 2, pp. 190–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. M. H. Kang, J. S. Kim, J. E. Seo, S. C. Oh, and Y. A. Yoo, “BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway,” Experimental Cell Research, vol. 316, no. 1, pp. 24–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. D. S. Byun, K. Cho, B. K. Ryu et al., “Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma,” International Journal of Cancer, vol. 104, no. 3, pp. 318–327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Y. Deng, D. Sun, X. Y. Liu, Y. Pan, and H. Liang, “STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer,” World Journal of Gastroenterology, vol. 16, no. 42, pp. 5380–5387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Katoh, “Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer,” Cancer Biology and Therapy, vol. 6, no. 6, pp. 832–839, 2007. View at Scopus
  115. M. Ernst, M. Najdovska, D. Grail et al., “STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1727–1738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. J. L. Merchant, “What lurks beneath: IL-11, via Stat3, promotes inflammation-associated gastric tumorigenesis,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1628–1631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. L. M. Judd, K. Bredin, A. Kalantzis, B. J. Jenkins, M. Ernst, and A. S. Giraud, “STAT3 activation regulates growth, inflammation, and vascularization in a mouse model of gastric tumorigenesis,” Gastroenterology, vol. 131, no. 4, pp. 1073–1085, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. A. S. Giraud, C. Jackson, T. R. Menheniott, and L. M. Judd, “Differentiation of the Gastric Mucosa IV. Role of trefoil peptides and IL-6 cytokine family signaling in gastric homeostasis,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 292, no. 1, pp. G1–G5, 2007. View at Publisher · View at Google Scholar
  119. X.-Y. Fan, X.-L. Hu, T.-M. Han et al., “Association between RUNX3 promoter methylation and gastric cancer: a meta-analysis,” BMC Gastroenterology, vol. 11, article 92, 2011. View at Publisher · View at Google Scholar
  120. G. R. Anderson, B. M. Brenner, H. Swede et al., “Intrachromosomal genomic instability in human sporadic colorectal cancer measured by genome-wide allelotyping and inter-(simple sequence repeat) PCR,” Cancer Research, vol. 61, no. 22, pp. 8274–8283, 2001. View at Scopus