About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 821062, 14 pages
http://dx.doi.org/10.1100/2012/821062
Research Article

New Insights in the Sugarcane Transcriptome Responding to Drought Stress as Revealed by Supersage

1Department of Genetics, Federal University of Pernambuco (UFPE), 50670-901 Recife, PE, Brazil
2Biotechnology Division, Sugarcane Technology Center (CTC), 13400-970 Piracicaba, SP, Brazil

Received 31 October 2011; Accepted 2 December 2011

Academic Editor: Luigi Cattivelli

Copyright © 2012 Éderson Akio Kido et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D’Hont, G. M. Souza, M. Menossi et al., “Sugarcane: a major source of sweetness, alcohol, and bio-energy,” in Genomics of Tropical Crop Plants, P. H. Moore and R. Moore, Eds., pp. 483–513, Springer, New York, NY, USA, 2008.
  2. A. J. Waclawovsky, P. M. Sato, C. G. Lembke, P. H. Moore, and G. M. Souza, “Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content,” Plant Biotechnology Journal, vol. 8, no. 3, pp. 263–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. FAOSTAT, “Food and Agriculture Organization of the Unite Nations. In: FAO Statistical Databases,” 2010, http://faostat.fao.org/.
  4. UNICA, “União da indústria de Cana-de-açúcar. In: Statistics of sugarcane sector—2009,” 2009, http://www.unica.com.br/dadosCotacao/estatistica/.
  5. J. Goldemberg, “Ethanol for a sustainable energy future,” Science, vol. 315, no. 5813, pp. 808–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Menossi, M. C. Silva-Filho, M. Vincentz, M. A. Van-Sluys, and G. M. Souza, “Sugarcane functional genomics: gene discovery for agronomic trait development,” International Journal of Plant Genomics, vol. 2008, Article ID 458732, 11 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. A. Bray, J. Bailey-Serres, and E. Weretilnyk, “Responses to abiotic stresses,” in Biochemistry and Molecular Biology of Plants, W. Gruissem, B. Buchannan, and R. Jones, Eds., pp. 1158–1249, American Society of Plant Physiologists, Rockville, Md, USA, 2000.
  8. L. Taiz and E. Zeiger, Fisiologia Vegetal, S. A. Artmed Editora, Porto Alegre, Brazil, 2004.
  9. W. Wang, B. Vinocur, and A. Altman, “Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance,” Planta, vol. 218, no. 1, pp. 1–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Cattivelli, F. Rizza, F. W. Badeck et al., “Drought tolerance improvement in crop plants: an integrated view from breeding to genomics,” Field Crops Research, vol. 105, no. 1-2, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Y. Patade, A. N. Rai, and P. Suprasanna, “Expression analysis of sugarcane shaggy-like kinase (SuSK) gene identified through cDNA subtractive hybridization in sugarcane (Saccharum officinarum L.),” Protoplasma, vol. 248, no. 3, pp. 613–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Nakashima and K. Shinozaki, “Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants,” Physiologia Plantarum, vol. 126, no. 1, pp. 62–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Umezawa, M. Fujita, Y. Fujita, K. Yamaguchi-Shinozaki, and K. Shinozaki, “Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future,” Current Opinion in Biotechnology, vol. 17, no. 2, pp. 113–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. F. A. Rodrigues, M. L. de Laia, and S. M. Zingaretti, “Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants,” Plant Science, vol. 176, no. 2, pp. 286–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. A. Shimkets, “Gene expression quantitation technology summary,” in Gene Expression Profile: Methods and Protocol, R. A. Shimkets, Ed., pp. 1–12, Humana Press, New Haven, Conn, USA, 2004.
  16. H. Matsumura, S. Reich, A. Ito et al., “Gene expression analysis of plant host-pathogen interactions by SuperSAGE,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15718–15723, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Terauchi, H. Matsumura, D. H. Krüger, and G. Kahl, “SuperSAGE: the most advanced through comparative genomics,” in The Handbook of Plant Functional Genomics: Concepts and Protocols, G. Kahl and K. Meksem, Eds., pp. 37–54, Wiley-VCH, Weinheim, Germany, 2008.
  18. V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler, “Serial analysis of gene expression,” Science, vol. 270, no. 5235, pp. 484–487, 1995. View at Scopus
  19. H. Matsumura, K. H. Bin Nasir, K. Yoshida et al., “SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays,” Nature Methods, vol. 3, no. 6, pp. 469–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Coemans, H. Matsumura, R. Terauchi, S. Remy, R. Swennen, and L. Sági, “SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism,” Theoretical and Applied Genetics, vol. 111, no. 6, pp. 1118–1126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Molina, B. Rotter, R. Horres et al., “SuperSAGE: the drought stress-responsive transcriptome of chickpea roots,” BMC Genomics, vol. 9, article 553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Molina, M. Zaman-Allah, and F. Khan, “The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE,” BMC Plant Biology, vol. 11, article 31, 2011.
  23. H. Hamada, H. Matsumura, R. Tomita, R. Terauchi, K. Suzuki, and K. Kobayashi, “SuperSAGE revealed different classes of early resistance response genes in Capsicum chinense plants harboring L3-resistance gene infected with Pepper mild mottle virus,” Journal of General Plant Pathology, vol. 74, no. 4, pp. 313–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P. A. Gilardoni, S. Schuck, R. Jungling, B. Rotter, I. T. Baldwin, and G. Bonaventure, “SuperSAGE analysis of the Nicotiana attenuata transcriptome after fatty acid-amino acid elicitation (FAC): identification of early mediators of insect responses,” BMC Plant Biology, vol. 10, article 66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Kido, V. Pandolfi, L. M. Houllou-Kido et al., “Plant antimicrobial peptides: an overview of superSAGE transcriptional profile and a functional review,” Current Protein and Peptide Science, vol. 11, no. 3, pp. 220–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Matsumura, D. H. Krüger, G. Kahl, and R. Terauchi, “SuperSAGE: a modern platform for genome-wide quantitative transcript profiling,” Current Pharmaceutical Biotechnology, vol. 9, no. 5, pp. 368–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Robertson, M. Oveisi-Fordorei, S. D. Zuyderduyn et al., “DiscoverySpace: an interactive data analysis application,” Genome Biology, vol. 8, no. 1, article R6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Conesa, S. Götz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles, “Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research,” Bioinformatics, vol. 21, no. 18, pp. 3674–3676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kiper, D. Bartels, F. Herzfeld, and G. Richter, “The expresion of a plant genome in hnRNA and mRNA,” Nucleic Acids Research, vol. 6, no. 5, pp. 1961–1978, 1979. View at Publisher · View at Google Scholar · View at Scopus
  31. J. C. Kamalay and R. B. Goldberg, “Regulation of structural gene expression in tobacco,” Cell, vol. 19, no. 4, pp. 935–946, 1980. View at Scopus
  32. H. Yamaguchi, H. Fukuoka, T. Arao et al., “Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum,” Journal of Experimental Botany, vol. 61, no. 2, pp. 423–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. P. A. F. Galante, D. O. Vidal, J. E. de Souza, A. A. Camargo, and S. J. de Souza, “Sense-antisense pairs in mammals: functional and evolutionary considerations,” Genome Biology, vol. 8, no. 3, pp. R40.1–R40.14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Gowda, C. Jantasuriyarat, R. A. Dean, and G. L. Wang, “Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis,” Plant Physiology, vol. 134, no. 3, pp. 890–897, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Hassanein, A. A. Hassanein, A. B. El-din, M. Salama, and H. A. Hashem, “Role of jasmonic acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant,” Australian Journal of Basic and Applied Sciences, vol. 3, no. 2, pp. 904–919, 2009.
  36. C. D. Rock, Y. Sakata, and R. S. Quatrano, “Stress signaling I: the role of abscisic acid (ABA),” in Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, A. Pareek, S. K. Sopory, and H. J. Bohnert, Eds., pp. 33–73, Springer, Dordrecht, The Netherlands, 2010.
  37. S. A. Anjum, L. Wang, M. Farooq, I. Khan, and L. Xue, “Methyl jasmonate-induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought,” Journal of Agronomy and Crop Science, vol. 197, no. 4, pp. 296–301, 2011. View at Publisher · View at Google Scholar
  38. A. Chini, S. Fonseca, G. Fernández et al., “The JAZ family of repressors is the missing link in jasmonate signalling,” Nature, vol. 448, no. 7154, pp. 666–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Thines, L. Katsir, M. Melotto et al., “JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling,” Nature, vol. 448, no. 7154, pp. 661–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Ogas, S. Kaufmann, J. Henderson, and C. Somerville, “PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13839–13844, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Belin and L. Lopez-Molina, “Arabidopsis seed germination responses to osmotic stress involve the chromatin modifier PICKLE,” Plant Signaling & Behavior, vol. 3, no. 7, pp. 478–479, 2008. View at Scopus
  42. J. L. Riechmann and E. M. Meyerowitz, “The AP2/EREBP family of plant transcription factors,” Biological Chemistry, vol. 379, no. 6, pp. 633–646, 1998. View at Scopus
  43. J. L. Riechmann, J. Heard, G. Martin et al., “Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes,” Science, vol. 290, no. 5499, pp. 2105–2110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Sakuma, Q. Liu, J. G. Dubouzet, H. Abe, K. Shinozaki, and K. Yamaguchi-Shinozaki, “DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression,” Biochemical and Biophysical Research Communications, vol. 290, no. 3, pp. 998–1009, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. A. M. Sharoni, M. Nuruzzaman, K. Satoh et al., “Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice,” Plant & Cell Physiology, vol. 52, no. 2, pp. 344–360, 2011.
  46. R. Lin, W. Zhao, X. Meng, and Y. L. Peng, “Molecular cloning and characterization of a rice gene encoding AP2/EREBP-type transcription factor and its expression in response to infection with blast fungus and abiotic stresses,” Physiological and Molecular Plant Pathology, vol. 70, no. 1–3, pp. 60–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Zhang, M. Chen, L. Li et al., “Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco,” Journal of Experimental Botany, vol. 60, no. 13, pp. 3781–3796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Mangeon, R. M. Junqueira, and G. Sachetto-Martins, “Functional diversity of the plant glycine-rich proteins superfamily,” Plant Signaling and Behavior, vol. 5, no. 2, pp. 99–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Sachetto-Martins, L. O. Franco, and D. E. de Oliveira, “Plant glycine-rich proteins: a family or just proteins with a common motif?” Biochimica et Biophysica Acta, vol. 1492, no. 1, pp. 1–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Wang, D. Liang, S. Shi, F. Ma, H. Shu, and R. Wang, “Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) borkh,” Plant Molecular Biology Reporter, vol. 29, no. 1, pp. 125–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. C. H. Dong, B. K. Zolman, B. Bartel et al., “Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling,” Molecular Plant, vol. 2, no. 1, pp. 59–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. G. Sappl, A. J. Carroll, R. Clifton et al., “The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress,” The Plant Journal, vol. 58, no. 1, pp. 53–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. D. P. Dixon, M. Skipsey, and R. Edwards, “Roles for glutathione transferases in plant secondary metabolism,” Phytochemistry, vol. 71, no. 4, pp. 338–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. S. Gill and N. Tuteja, “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants,” Plant Physiology and Biochemistry, vol. 48, no. 12, pp. 909–930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Edwards and D. P. Dixon, “The role of glutathione transferases in herbicide metabolism,” in Herbicides and Their Mechanisms of Action, A. H. Cobb and R. C. Kirkwood, Eds., pp. 38–71, Sheffield Academic Press, Sheffield, UK, 2000.
  56. M. W. Bianchi, C. Roux, and N. Vartanian, “Drought regulation of GST8, encoding the Arabidopsis homologue of ParC/Nt107 glutathione transferase/peroxidase,” Physiologia Plantarum, vol. 116, no. 1, pp. 96–105, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. Á. Gallé, J. Csiszár, M. Secenji et al., “Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit,” Journal of Plant Physiology, vol. 166, no. 17, pp. 1878–1891, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. George, G. Venkataraman, and A. Parida, “A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco,” Journal of Plant Physiology, vol. 167, no. 4, pp. 311–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. W. Ji, Y. Zhu, Y. Li et al., “Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco,” Biotechnology Letters, vol. 32, no. 8, pp. 1173–1179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. C. R. McClung, M. Hsu, J. E. Painter, J. M. Gagne, S. D. Karlsberg, and P. A. Salomé, “Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase,” Plant Physiology, vol. 123, no. 1, pp. 381–391, 2000. View at Scopus
  61. E. A. Cossins and L. Chen, “Folates and one-carbon metabolism in plants and fungi,” Phytochemistry, vol. 45, no. 3, pp. 437–452, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. J. I. Moreno, R. Martín, and C. Castresana, “Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress,” The Plant Journal, vol. 41, no. 3, pp. 451–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. G. M. Ali and S. Komatsu, “Proteomic analysis of rice leaf sheath during drought stress,” Journal of Proteome Research, vol. 5, no. 2, pp. 396–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. D. Sharma and P. Singh, “Comparative studies on drought-induced changes in peptidyl prolyl cis-trans isomerase activity in drought-tolerant and susceptible cultivars of Sorghum bicolor,” Current Science, vol. 84, no. 7, pp. 911–918, 2003. View at Scopus
  65. J. C. Ahn, D. W. Kim, Y. N. You et al., “Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress,” BMC Plant Biology, vol. 10, article 253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. V. Godoy, A. S. Lazzaro, C. A. Casalongué, and B. San Segundo, “Expression of a Solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions,” Plant Science, vol. 152, no. 2, pp. 123–134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. S. A. J. Messing, S. B. Gabelli, I. Echeverria et al., “Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid,” The Plant Cell, vol. 22, no. 9, pp. 2970–2980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. D. R. McCarty, “Genetic control and integration of maturation and germination pathways in seed development,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 46, pp. 71–93, 1995. View at Scopus
  69. D. Durantini, A. Giulini, A. Malgioglio et al., “Vivipary as a tool to analyze late embryogenic events in maize,” Heredity, vol. 101, no. 5, pp. 465–470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. S. H. Schwartz, B. C. Tan, D. A. Gage, J. A. D. Zeevaart, and D. R. McCarty, “Specific oxidative cleavage of carotenoids by VP14 of maize,” Science, vol. 276, no. 5320, pp. 1872–1874, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. B. C. Tan, S. H. Schwartz, J. A. D. Zeevaart, and D. R. Mccarty, “Genetic control of abscisic acid biosynthesis in maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 22, pp. 12235–12240, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Iuchi, M. Kobayashi, T. Taji et al., “Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis,” The Plant Journal, vol. 27, no. 4, pp. 325–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. X. R. Wan and L. Li, “Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene,” Biochemical and Biophysical Research Communications, vol. 347, no. 4, pp. 1030–1038, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Gao, C. Wang, C. Wei, and Y. Li, “A branched-chain aminotransferase may regulate hormone levels by affecting KNOX genes in plants,” Planta, vol. 230, no. 4, pp. 611–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. M. A. Campbell, J. K. Patel, J. L. Meyers, L. C. Myrick, and J. L. Gustin, “Genes encoding for branched-chain amino acid aminotransferase are differentially expressed in plants,” Plant Physiology and Biochemistry, vol. 39, no. 10, pp. 855–860, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. R. Diebold, J. Schuster, K. Däschner, and S. Binder, “The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins,” Plant Physiology, vol. 129, no. 2, pp. 540–550, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Malatrasi, M. Corradi, J. T. Svensson, T. J. Close, M. Gulli, and N. Marmiroli, “A branched-chain amino acid aminotransferase gene isolated from Hordeum vulgare is differentially regulated by drought stress,” Theoretical and Applied Genetics, vol. 113, no. 6, pp. 965–976, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. M. J. Mueller, “Enzymes involved in jasmonic acid biosynthesis,” Physiologia Plantarum, vol. 100, no. 3, pp. 653–663, 1997. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. N. Ozturk, V. Talamé, M. Deyholos et al., “Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley,” Plant Molecular Biology, vol. 48, no. 5-6, pp. 551–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. V. Talamè, N. Z. Ozturk, H. J. Bohnert, and R. Tuberosa, “Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis,” Journal of Experimental Botany, vol. 58, no. 2, pp. 229–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. K. M. Devaiah, G. Bali, T. N. Athmaram, and M. S. Basha, “Identification of two new genes from drought tolerant peanut up-regulated in response to drought,” Plant Growth Regulation, vol. 52, no. 3, pp. 249–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Padan and S. Schuldiner, “Na+/H+ antiporters, molecular devices that couple the Na+ and H+ circulation in cells,” Journal of Bioenergetics and Biomembranes, vol. 25, no. 6, pp. 647–669, 1993. View at Scopus
  83. K. Xu, P. Hong, L. Luo, and T. Xia, “Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thalina, in Petunia hybrida enhances salt and drought tolerance,” Journal of Plant Biology, vol. 52, no. 5, pp. 453–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Brini, M. Hanin, I. Mezghani, G. A. Berkowitz, and K. Masmoudi, “Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants,” Journal of Experimental Botany, vol. 58, no. 2, pp. 301–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. Asif, Y. Zafar, J. Iqbal et al., “Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance,” Molecular Biotechnology, vol. 49, no. 3, pp. 250–256, 2011. View at Publisher · View at Google Scholar
  86. M. A. R. Milla, A. Maurer, H. A. Rodríguez, and J. P. Gustafson, “Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways,” The Plant Journal, vol. 36, no. 5, pp. 602–615, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Navrot, V. Collin, J. Gualberto et al., “Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses,” Plant Physiology, vol. 142, no. 4, pp. 1364–1379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Miao, D. Lv, P. Wang et al., “An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses,” The Plant Cell, vol. 18, no. 10, pp. 2749–2766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Fleming, C. G. Armstrong, N. Morrice, A. Paterson, M. Goedert, and P. Cohen, “Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7,” Biochemical Journal, vol. 352, no. 1, pp. 145–154, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Kültz, “Evolution of osmosensory MAP kinase signaling pathways,” Integrative and Comparative Biology, vol. 41, no. 4, pp. 743–757, 2001.
  91. Z. S. Xu, L. Liu, Z. Y. Ni et al., “W55a encodes a novel protein kinase that Is involved in multiple stress responses,” Journal of Integrative Plant Biology, vol. 51, no. 1, pp. 58–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Kobayashi, S. Yamamoto, H. Minami, Y. Kagaya, and T. Hattori, “Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid,” The Plant Cell, vol. 16, no. 5, pp. 1163–1177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. P. B. K. Kishor, S. Sangam, R. N. Amrutha et al., “Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance,” Current Science, vol. 88, no. 3, pp. 424–438, 2005. View at Scopus
  94. B. Zhu, J. Su, M. Chang, D. P. S. Verma, Y. L. Fan, and R. Wu, “Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice,” Plant Science, vol. 139, no. 1, pp. 41–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Razavizadeh and A. A. Ehsanpour, “Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants,” Biological Letters, vol. 46, no. 2, pp. 63–75, 2009.
  96. M. Yamada, H. Morishita, K. Urano et al., “Effects of free proline accumulation in petunias under drought stress,” Journal of Experimental Botany, vol. 56, no. 417, pp. 1975–1981, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Gubis, R. Vaňková, V. Červená et al., “Transformed tobacco plants with increased tolerance to drought,” South African Journal Botany, vol. 73, no. 4, pp. 505–511, 2007.
  98. H. M. Iskandar, R. Casu, A. Fletcher et al., “Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms,” BMC Plant Biology, vol. 11, article12, 2011.