Review Article

General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems

Table 3

Typical examples of experimental set up and recorded parameters based on small deformation rheological measurements (oscillatory tests) for pectin-based gels.

Sample ingredientsExperimental setupRecorded parametersReferences

HMP and fructoseCarri-med rheometer (Valley View, OH);
geometry: cone and plate (4 cm diameter; 2° cone angle);
strain: 3%; frequency: 1 Hz; duration: 2 h; temperature sweep: 50–10°C
frequency sweep: 0.01–1 Hz; temperatures: 50, 40, 30, 20, 15, and 10°C
𝐺
𝐺
η *
tan δ
SDR
Rao and Cooley [10]

ALMP, Sucrose, and grape juiceStress-controlled rheometer (Bohlin CS, ref. GTM-CS-V1);
geometry: cylindrical concentric with a double gap (30 mL capacity);
strain: 2%; frequency sweep: 0.005–2 Hz,
temperatures: 65, 50, 35, 20, and 10°C; speed: 0.5°C/min
𝐺
𝐺
tan δ
Sousa et al. [14]

Pectin, sucrose, and calciumStress-controlled rheometer CSL-100 (TA Instruments, Surrey, UK);
geometry: cone and plate (4 cm diameter; 1° cone angle; 55 μm truncation);
strain: 1.5%; frequency: 0.1–10 Hz, Temperature sweep: 90–20°C;
speed: 3°C/min, frequency: 1 Hz
𝐺
𝐺
η *
tan δ
Norziah et al. [16]

LMP (olive pectic extract) and CaCl2CVO HR 120 rheometer (Bohlin Instruments);
geometry: cone and plate (40 mm diameter; 4° cone angle; 150 μm gap);
strain: 1%; frequency:1 Hz; Time sweep: 20 h;
temperature: 20°C; Frequency sweep: 0.005–5 Hz
𝐺
𝐺
Cardoso et al. [17]

LMP, ALMP, CaCl2, and GDLStrain-controlled rheometer (ARES, Rheometric Scientific);
geometry: cone and plane geometry (50 mm diameter; 2.3° cone angle)
or a couette geometry (32 mm inner radius; 34 mm outer radius);
atress-controlled rheometer (AR1000, TA Instruments);
geometry: cone and plane (40 mm diameter; 1° cone angle);
frequency: 1 Hz; temperature sweep: 80–20 or 5°C; speed: 30°C/min
𝐺
𝐺
Tg
Lootens et al. [18]

ALMP, Sodium caseinate solution, CaCl2·2H2O and GDLBohlin rheometer (CS50, CVO or CVO-R);
stress-controlled geometry: concentric cylinder C25 measurement cell;
strain: 0.5%; frequency: 1 Hz; duration: 8 h; temperature: 25°C
𝐺
𝐺
Matia-Merino et al. [8]

HMP, sorbitol, fructose, glucose, sucrose, xylitol, glycerol or ethane-1,2-diol and trisodium citrateA sensitive prototype rheometer designed and constructed by R. K. Richardson (Cranfield University, UK); geometry: highly truncated cone and plate (50 mm diameter; 0.05 rad cone angle; 1 mm gap); strain: 0.5%; frequency: 1 rad/s; temperature sweep: 95–5, 5–90°C, and 90–5°C;
speed: 1°C/min; frequency sweep: 0.1–100 Hz
𝐺
𝐺
Tsoga et al. [19]

LMP, ALMP, CaCl2, and GDLStrain-controlled rheometer (ARES, Rheometric Scientific);
geometry: plane-plane (50 mm diameter; 1 mm gap)
or a stress-controlled rheometer (AR1000, TA Instruments);
geometry: cone-plane (60 mm diameter; 1° cone angle);
frequency: 1 Hz; temperature sweep: 80–5°C
𝐺
𝐺
Tg
Capel et al. [20]

HMP, LMP, CaCl2·2H2O, citrate buffer (pH: 3.5), and different sucrose concentrationsStresstech rheometer (Reologica Instruments, Lund, Sweden);
strain-controlled; geometry: cup and bob; strain: 0.002
frequency: 1 Hz; temperature: 20°C, time sweep: 3 and 16 h
frequency sweep (16 h after gel preparation): 0.01–10 Hz
𝐺
𝐺
Löfgren and Hermansson [21]

ALMP and CarrageenanStresstech rheometer (Reologica AB, Lund, Sweden);
geometry: plate-serrated plate (25 mm diameter);
stress sweep from 0.01 until critical stress at a frequency of 1 Hz
𝐺
𝐺
η *
tan δ
Arltoft et al. [2]

LMP (from “nopal” cactus pads) and CaCl2Rheometrics (fluids spectrometer RFS II, piscattaway, NJ, USA);
geometry: cone and plate (0.5 cm diameter; 0.04 rad cone angle);
strain: 5%; frequency sweep: 1–21.5 rad/s
temperature sweeps: 85–5 and 60–5°C; Speed: 1°C/min
𝐺
𝐺
η *
tan δ
Cárdenas et al. [22]

HMP, CaCl2, water, and enzyme solutionCarriMed CSL-100 rheometer, geometry: cone and plate (6 cm diameter; 2° cone angle),
Strain: 1%; frequency: 1 Hz; duration: 160 min;
temperature sweep: 30–70°C; speed: 1°C/min
𝐺
𝐺
η *
O’Brien et al. [23]

Pectin (from buttercup squash fruit) and sugarPhysica UDS 200 rheometer; geometry: cup and bob (17 mL total volume);
strain: 1%; frequency sweep: 0.01–10 Hz; temperature sweeps: 90–20, 20–90°C;
speed: 1°C/min; frequency: 1 Hz
𝐺
𝐺
O’Donoghue and Somerfield [24]

Mucin and pectinPaar Physica MCR 301 rheometer (Anton paar GmbH, Austria);
geometry: parallel plate (0.05 mm gap; CP50-1) or a concentric cylinder (DG26.7); measuring system; frequency sweep: 100–0.1 Hz; temperature: 37°C
𝐺
𝐺
tan δ
Sriamornsak and Wattanakorn [25]

Pectins with different DM and calciumRotational rheometer (ARES, TA Instruments, USA); strain-controlled
geometry: parallel plates (50 mm diameter; 1 mm gap); frequency: 10 rad/s;
time sweep: 8 h; frequency sweep: 100–0.1 rad/s; temperature: 25°C
𝐺
𝐺
Fraeye et al. [9]

LMP and calciumRotational controlled stress rheometer AR 2000 (TA Instruments);
geometry: cone-plate (2 cm diameter; 4° cone angle; 53 μm gap);
time sweep: 8 h, frequency: 1 rad/s; strain: 3%; Frequency sweep: 0.01–100 rad/s
𝐺
𝐺
Gigli et al. [12]

LMP, HMP, sugar, CaCl2·2H2O, citrate buffer (pH: 3.5)Stresstech rheometer (Reologica Instruments, Sweden);
strain-controlled; geometry: Cup and bob (volume: 25 mL);
sample volume: 15.9 mL; strain: 0.002; frequency: 1 Hz;
time sweep: every 20 s for 500–600 sweeps
𝐺
𝐺
tan δ
Holm et al. [3]

ALMP, HMP, inulin, Sorbitol, and CaCl2·2H2OPaar Physica MCR 300 rheometer (Anton Paar GmbH, Austria);
geometry: parallel plates (50 mm diameter; 1 mm gap);
and cone and plate (50 mm diameter; 2° cone angle; 0.05 mm gap);
strain: 1%; frequency sweep: 0.1–100 Hz;
temperature sweep: 90–5°C; speed: 2°C/min
𝐺
𝐺
𝐺
η *
tan δ
Haghighi et al. [26]

HMP: high methoxyl pectin; LMP: low methoxyl pectin; ALMP: amidated low methoxyl pectin; GDL: glucono-delta-lactone; DM: degree of methoxylation; 𝐺 : storage modulus; 𝐺 : loss modulus; η*: complex viscosity; tan δ: loss tangent; 𝐺 : complex modulus; SDR: structure development rate; Tg: gel temperature.