About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2012 (2012), Article ID 982140, 7 pages
http://dx.doi.org/10.1100/2012/982140
Research Article

Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus

1Department of Emergency Medicine, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
2State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
3School of Public Health, Chongqing Medical University, Chongqing 400016, China

Received 21 March 2012; Accepted 7 May 2012

Academic Editors: M. L. Arbonés, V. E. Fernandez Pinto, J. Qiu, and P. Webster

Copyright © 2012 Lizhi Ma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Records, “The type VI secretion system: a multipurpose delivery system with a phage-like machinery,” Molecular Plant-Microbe Interactions, vol. 24, no. 7, pp. 751–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. J. Jani and P. A. Cotter, “Type VI secretion: not just for pathogenesis anymore,” Cell Host & Microbe, vol. 8, no. 1, pp. 2–6, 2010. View at Scopus
  3. S. T. Miyata, M. Kitaoka, L. Wieteska, C. Frech, N. Chen, and S. Pukatzki, “The Vibrio cholerae type VI secretion system: evaluating its role in the human disease cholera,” Frontiers in Microbiology, vol. 1, article 117, 2010.
  4. S. B. von Bodman, J. M. Willey, and S. P. Diggle, “Cell-cell communication in bacteria: united we stand,” Journal of Bacteriology, vol. 190, no. 13, pp. 4377–4391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Waters and B. L. Bassler, “Quorum sensing: cell-to-cell communication in bacteria,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 319–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. B. Miller and B. L. Bassler, “Quorum sensing in bacteria,” Annual Review of Microbiology, vol. 55, pp. 165–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Makino, K. Oshima, K. Kurokawa et al., “Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae,” The Lancet, vol. 361, no. 9359, pp. 743–749, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Gode-Potratz and L. L. McCarter, “Quorum sensing and silencing in Vibrio parahaemolyticus,” Journal of Bacteriology, vol. 193, no. 16, pp. 4224–4237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, Y. Qiu, Y. Tan, Z. Guo, R. Yang, and D. Zhou, “Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus,” PLoS ONE, vol. 7, no. 4, Article ID e34622, 2012.
  10. N. Philippe, J. P. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider, “Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria,” Plasmid, vol. 51, no. 3, pp. 246–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhang, H. Gao, L. Wang et al., “Molecular characterization of transcriptional regulation of rovA by PhoP and RovA in Yersinia pestis,” PLoS ONE, vol. 6, no. 9, Article ID e25484, 2011.
  12. R. E. Parales and C. S. Harwood, “Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for Gram—bacteria,” Gene, vol. 133, no. 1, pp. 23–30, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhan, Y. Han, L. Yang et al., “The cyclic AMP receptor protein, CRP, is required for both virulence and expression of the minimal CRP regulon in Yersinia pestis biovar microtus,” Infection and Immunity, vol. 76, no. 11, pp. 5028–5037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Ishikawa, P. K. Rompikuntal, B. Lindmark, D. L. Milton, and S. N. Wai, “Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains,” PLoS ONE, vol. 4, no. 8, Article ID e6734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. van Helden, “Regulatory sequence analysis tools,” Nucleic Acids Research, vol. 31, no. 13, pp. 3593–3596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. L. Enos-Berlage, Z. T. Guvener, C. E. Keenan, and L. L. McCarter, “Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus,” Molecular Microbiology, vol. 55, no. 4, pp. 1160–1182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Sheng, D. Gu, Q. Wang, Q. Liu, and Y. Zhang, “Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I, (T6SSVA1) in fish pathogen Vibrio alginolyticus,” Archives of Microbiology, vol. 194, no. 5, pp. 379–390, 2012. View at Publisher · View at Google Scholar
  18. W. Zhang, S. Xu, J. Li, X. Shen, Y. Wang, and Z. Yuan, “Modulation of a thermoregulated type VI secretion system by ahl-dependent quorum sensing in Yersinia pseudotuberculosis,” Archives of Microbiology, vol. 193, no. 5, pp. 351–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. K. Khajanchi, J. Sha, E. V. Kozlova et al., “N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila,” Microbiology, vol. 155, no. 11, pp. 3518–3531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Lesic, M. Starkey, J. He, R. Hazan, and L. G. Rahme, “Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis,” Microbiology, vol. 155, no. 9, pp. 2845–2855, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Liu, S. J. Coulthurst, L. Pritchard et al., “Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum,” PLoS Pathogens, vol. 4, no. 6, Article ID e1000093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Y. Leung, B. A. Siame, H. Snowball, and Y. K. Mok, “Type VI secretion regulation: crosstalk and intracellular communication,” Current Opinion in Microbiology, vol. 14, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. S. Bernard, Y. R. Brunet, E. Gueguen, and E. Cascales, “Nooks and crannies in type VI secretion regulation,” Journal of Bacteriology, vol. 192, no. 15, pp. 3850–3860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Pukatzki, A. T. Ma, D. Sturtevant et al., “Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1528–1533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Zheng, O. S. Shin, D. E. Cameron, and J. J. Mekalanos, “Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 49, pp. 21128–21133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. S. Bernard, Y. R. Brunet, M. Gavioli, R. Lloubès, and E. Cascales, “Regulation of type VI Secretion gene clusters by σ54 and cognate enhancer binding proteins,” Journal of Bacteriology, vol. 193, no. 9, pp. 2158–2167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kitaoka, S. T. Miyata, T. M. Brooks, D. Unterweger, and S. Pukatzki, “VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae,” Journal of Bacteriology, vol. 193, no. 23, pp. 6471–6482, 2011. View at Publisher · View at Google Scholar