About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 129637, 5 pages
http://dx.doi.org/10.1155/2013/129637
Research Article

Inclusions in a Single Variable in Ultrametric Spaces and Hyers-Ulam Stability

Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland

Received 7 August 2013; Accepted 2 September 2013

Academic Editors: G. Dai and F. J. Garcia-Pacheco

Copyright © 2013 Magdalena Piszczek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, vol. 427 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
  2. M. Piszczek, “The properties of functional inclusions and Hyers-Ulam stability,” Aequationes Mathematicae, vol. 85, pp. 111–118, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Ciepliński, “Stability of multi-additive mappings in non-Archimedean normed spaces,” Journal of Mathematical Analysis and Applications, vol. 373, no. 2, pp. 376–383, 2011.
  4. Y. J. Cho, C. Park, and R. Saadati, “Functional inequalities in non-Archimedean Banach spaces,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1238–1242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Kaiser, “On stability of the Cauchy equation in normed spaces over fields with valuation,” Publicationes Mathematicae, vol. 64, no. 1-2, pp. 189–200, 2004. View at Scopus
  6. Z. Kaiser, “On stability of the monomial functional equation in normed spaces over fields with valuation,” Journal of Mathematical Analysis and Applications, vol. 322, no. 2, pp. 1188–1198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Moslehian and T. M. Rassias, “Stability of functional equations in non-archimedean spaces,” Applicable Analysis and Discrete Mathematics, vol. 1, no. 2, pp. 325–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Schwaiger, “Functional equations for homogeneous polynomials arising from multilinear mappings and their stability,” Annales Mathematicae Silesianae, vol. 8, pp. 157–171, 1994.
  9. J. Brzdęk, “On a method of proving the Hyers-Ulam stability of functional equations on restricted domains,” The Australian Journal of Mathematical Analysis and Applications, vol. 6, no. 1, pp. 1–10, 2009.
  10. G.-L. Forti, “Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations,” Journal of Mathematical Analysis and Applications, vol. 295, no. 1, pp. 127–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Trif, “Hyers-Ulam-Rassias stability of a linear functional equation with constant coeffcients,” Nonlinear Functional Analysis and Applications, vol. 11, pp. 881–889, 2006.
  12. T. Trif, “On the stability of a general gamma-type functional equation,” Publicationes Mathematicae, vol. 60, no. 1-2, pp. 47–61, 2002. View at Scopus