About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 197406, 9 pages
http://dx.doi.org/10.1155/2013/197406
Research Article

A Local Genetic Algorithm for the Identification of Condition-Specific MicroRNA-Gene Modules

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA

Received 12 November 2012; Accepted 17 December 2012

Academic Editors: R. Jiang, W. Tian, J. Wan, and X. Zhao

Copyright © 2013 Wenbo Mu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. J. Martinez and A. J. M. Walhout, “The interplay between transcription factors and microRNAs in genome-scale regulatory networks,” BioEssays, vol. 31, no. 4, pp. 435–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. miRBase, http://www.mirbase.org/.
  3. Y. Dai and X. Zhou, “Computational methods for the identification of microRNA targets,” Open Access Bioinformatics, vol. 2010, no. 2, pp. 29–39, 2010. View at Publisher · View at Google Scholar
  4. N. J. Martinez and A. J. M. Walhout, “The interplay between transcription factors and microRNAs in genome-scale regulatory networks,” BioEssays, vol. 31, no. 4, pp. 435–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Le Béchec, E. Portales-Casamar, G. Vetter et al., “MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model,” BMC Bioinformatics, vol. 12, no. 1, article 67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. T. Huang, C. Athanassiou, and P. V. Benos, “mirConnX: condition-specific mRNA-microRNA network integrator,” Nucleic Acids Research, vol. 39, supplement 2, pp. W416–W423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Friard, A. Re, D. Taverna, M. De Bortoli, and D. Corá, “CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse,” BMC Bioinformatics, vol. 11, no. 1, article 435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. S. Taylor, N. Schultz, H. Hieronymus et al., “Integrative genomic profiling of human prostate cancer,” Cancer Cell, vol. 18, no. 1, pp. 11–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Edgar, M. Domrachev, and A. E. Lash, “Gene Expression Omnibus: NCBI gene expression and hybridization array data repository,” Nucleic Acids Research, vol. 30, no. 1, pp. 207–210, 2002. View at Scopus
  10. S. Ramaswamy, P. Tamayo, R. Rifkin et al., “Multiclass cancer diagnosis using tumor gene expression signatures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 15149–15154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society B, vol. 57, no. 1, pp. 289–300, 1995.
  13. D. Betel, M. Wilson, A. Gabow, D. S. Marks, and C. Sander, “The microRNA.org resource: targets and expression,” Nucleic Acids Research, vol. 36, supplement 1, pp. D149–D153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human microRNA targets,” PLoS Biology, vol. 2, no. 11, article e363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Matys, O. V. Kel-Margoulis, E. Fricke et al., “TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes,” Nucleic Acids Research, vol. 34, pp. D108–D110, 2006. View at Scopus
  17. A. E. Kel, E. Gößling, I. Reuter, E. Cheremushkin, O. V. Kel-Margoulis, and E. Wingender, “MATCH: a tool for searching transcription factor binding sites in DNA sequences,” Nucleic Acids Research, vol. 31, no. 13, pp. 3576–3579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Roqueiro, J. Frasor, and Y. Dai, “BindSDb: a binding-information spatial database,” in Proceedings of IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW '10), pp. 573–578, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Lu, Y. Zhou, W. Qu, M. Deng, and C. Zhang, “A lasso regression model for the construction of microRNA-target regulatory networks,” Bioinformatics, vol. 27, no. 17, pp. 2406–2413, 2011. View at Publisher · View at Google Scholar
  21. J. L. Chen, J. Li, K. J. Kiriluk et al., “Deregulation of a Hox protein regulatory network spanning prostate cancer initiation and progression,” Clinical Cancer Research, vol. 18, no. 16, pp. 4291–4302, 2012. View at Publisher · View at Google Scholar
  22. J. Jiang, E. J. Lee, Y. Gusev, and T. D. Schmittgen, “Real-time expression profiling of microRNA precursors in human cancer cell lines,” Nucleic Acids Research, vol. 33, no. 17, pp. 5394–5403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. J. Lee, Y. Gusev, J. Jiang et al., “Expression profiling identifies microRNA signature in pancreatic cancer,” International Journal of Cancer, vol. 120, no. 5, pp. 1046–1054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. A. Calin, A. Cimmino, M. Fabbri et al., “MiR-15a and miR-16-1 cluster functions in human leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 13, pp. 5166–5171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y.-Z. Pan, M. E. Morris, and A.-M. Yu, “MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells,” Molecular Pharmacology, vol. 75, no. 6, pp. 1374–1379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Bandrés, E. Cubedo, X. Agirre et al., “Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues,” Molecular Cancer, vol. 5, article 29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. L. Pio, The role of early growth response gene Egr3 in prostate cancer [Ph.D. thesis], University of California, Irvine, Calif, USA, 2012.
  28. A. Bisognin, G. Sales, A. Coppe, S. Bortoluzzi, and C. Romualdi, “MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update),” Nucleic Acids Research, vol. 40, no. 1, pp. W13–W21, 2012.
  29. J.-H. Cho, R. Gelinas, K. Wang et al., “Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes,” BMC Medical Genomics, vol. 4, no. 1, article 8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Wang, M. Lu, C. Qiu, and Q. Cui, “TransmiR: a transcription factor—microRNA regulation database,” Nucleic Acids Research, vol. 38, supplement 1, pp. D119–D122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Qiu, J. Wang, P. Yao, E. Wang, and Q. Cui, “microRNA evolution in a human transcription factor and microRNA regulatory network,” BMC Systems Biology, vol. 4, no. 1, article 90, 2010. View at Publisher · View at Google Scholar · View at Scopus