About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 215423, 6 pages
http://dx.doi.org/10.1155/2013/215423
Research Article

Analysis of Mineral and Heavy Metal Content of Some Commercial Fruit Juices by Inductively Coupled Plasma Mass Spectrometry

National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, P.O. Box 700, 400293 Cluj-Napoca 5, Romania

Received 16 August 2013; Accepted 30 September 2013

Academic Editors: N. Fontanals and P. Pohl

Copyright © 2013 Adriana Dehelean and Dana Alina Magdas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Tormen, D. P. Torres, I. M. Dittert, R. G. O. Araújo, V. L. A. Frescura, and A. J. Curtius, “Rapid assessment of metal contamination in commercial fruit juices by inductively coupled mass spectrometry after a simple dilution,” Journal of Food Composition and Analysis, vol. 24, no. 1, pp. 95–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Hague, A. Petroczi, P. L. R. Andrew, J. Barker, and D. P. Naughton, “Determination of metal ion content of beverages and estimation of target hazard quotients: a comparative study,” Chemistry Central Journal, vol. 2, no. 13, pp. 1–9, 2008. View at Publisher · View at Google Scholar
  3. Ministry of Health and Family Welfare , Manual of Methods of Analysis of Metals. Lab. Manual 9, Government of India, New Delhi, India, 2005.
  4. A. B. Williams, O. O. Ayejuyo, and A. F. Ogunyale, “Trace metal levels in fruit juices and carbonated beverages in Nigeria,” Environmental Monitoring and Assessment, vol. 156, no. 1–4, pp. 303–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. K. Beattie and T. N. Quoc, “Manganese in pineapple juices,” Food Chemistry, vol. 68, no. 1, pp. 37–39, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. http://www.cdph.ca.gov/certlic/drinkingwater/Documents/DWdocuments/EPAandCDPH-11-28-2008.pdf.
  7. WHO, Guidelines for Drinking Water Quality, World Health Organization, Geneva, Switzerland, 2008.
  8. S. I. R. Franke, D. Prá, R. Giulian et al., “Influence of orange juice in the levels and in the genotoxicity of iron and copper,” Food and Chemical Toxicology, vol. 44, no. 3, pp. 425–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. http://www.dionex.com/en-us/webdocs/88490-AB117-IC-Cations-FruitJuices-07Oct2010-LPN2605.pdf.
  10. P. C. Onianwa, I. G. Adetola, C. M. A. Iwegbue, M. F. Ojo, and O. O. Tella, “Trace heavy metals composition of some Nigerian beverages and food drinks,” Food Chemistry, vol. 66, no. 3, pp. 275–279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. B. Goldhaber, “Trace element risk assessment: essentiality vs. toxicity,” Regulatory Toxicology and Pharmacology, vol. 38, no. 2, pp. 232–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. B. L. Jayana, T. Prasai, A. Singh, and K. D. Yami, “Assessment of drinking water quality of madhyapur-thimi and study of antibiotic sensitivity against bacterial isolates,” Nepal Journal of Science and Technology, vol. 10, pp. 167–172, 2009.
  13. F. F. López, C. Cabrera, M. L. Lorenzo, and M. C. López, “Aluminium content of drinking waters, fruit juices and soft drinks: contribution to dietary intake,” Science of the Total Environment, vol. 292, no. 3, pp. 205–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. M. García, C. Cabrera, J. Sánchez, M. L. Lorenzo, and M. C. López, “Chromium levels in potable water, fruit juices and soft drinks: influence on dietary intake,” Science of the Total Environment, vol. 241, no. 1–3, pp. 143–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Silvestre, M. J. Lagarda, R. Farré, C. Martínez-Costa, and J. Brines, “Copper, iron and zinc determinations in human milk using FAAS with microwave digestion,” Food Chemistry, vol. 68, no. 1, pp. 95–99, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. G. J. Martin, J. B. Fournier, P. Allain, and Y. Mauras, “Optimization of analytical methods for origin assessment of orange juices. II. ICP-MS determination of trace and ultra-trace elements,” Analusis, vol. 25, no. 1, pp. 7–13, 1997. View at Scopus
  17. J. M. U. Maduabuchi, C. N. Nzegwu, E. O. Adigba et al., “Iron, manganese and nickel exposure from beverages in Nigeria: a public health concern?” Journal of Health Science, vol. 54, no. 3, pp. 335–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Zhou and J. Liu, “The simultaneous determination of 15 toxic elements in foods by ICP-MS,” Atomic Spectroscopy, vol. 18, no. 4, pp. 115–118, 1997. View at Scopus
  19. K. Song, H. Cha, S. H. Park, and Y. I. Lee, “Determination of trace cobalt in fruit samples by resonance ionization mass spectrometry,” Microchemical Journal, vol. 75, no. 2, pp. 87–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Eisele and S. R. Drake, “The partial compositional characteristics of apple juice from 175 apple varieties,” Journal of Food Composition and Analysis, vol. 18, no. 2-3, pp. 213–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Simpkins, H. Louie, M. Wu, M. Harrison, and D. Goldberg, “Trace elements in Australian orange juice and other products,” Food Chemistry, vol. 71, no. 4, pp. 423–433, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Farid and M. A. Enani, “Levels of trace elements in commercial fruit juices in Jeddah, Saudi Arabia,” Medicine Journal Islamic World Academy Science, vol. 18, no. 1, pp. 31–38, 2010.
  23. A. B. Tabrizi, “Cloud point extraction and spectrofluorimetric determination of aluminium and zinc in foodstuffs and water samples,” Food Chemistry, vol. 100, no. 4, pp. 1698–1703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. Magdas, A. Dehelean, and R. Puscas, “Isotopic and elemental determination in some Romanian apple fruit juices,” The Scientific World Journal, vol. 2012, Article ID 878242, 7 pages, 2012. View at Publisher · View at Google Scholar
  25. M. B. Rajkovic, C. M. Lacnjevac, N. R. Ralevic et al., “Identification of metals (heavy and radioactive) in drinking water by an indirect analysis method based on scale tests,” Sensors, vol. 8, no. 4, pp. 2188–2207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Rajappa, S. Manjappa, and E. T. Puttaiah, “Monitoring of heavy metal concentration in groundwater of Hakinaka Taluk, India,” Contemporary Engineering Sciences, vol. 3, no. 4, pp. 183–190, 2010.
  27. Z. Krejpcio, S. Sionkowski, and J. Bartela, “Safety of fresh fruits and juices available on the polish market as determined by heavy metal residues,” Polish Journal of Environmental Studies, vol. 14, no. 6, pp. 877–881, 2005. View at Scopus
  28. M. Barbaste, B. Medina, and J. P. Perez-Trujillo, “Analysis of arsenic, lead and cadmium in wines from the Canary Islands, Spain, by ICP/MS,” Food Additives and Contaminants, vol. 20, no. 2, pp. 141–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Tudoreanu, S. Prankel, L. Enache, et al., “The EU metal project—metals in the environment, toxicity and assessment of limits: cadmium,” in Environmental Research Advances, P. A. Clarckson, Ed., chapter 9, pp. 185–196, Nova Publishers, New York, NY, USA, 2007.