About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 282734, 5 pages
http://dx.doi.org/10.1155/2013/282734
Research Article

Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

1Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
2Program of Graduate Studies on Applied Microbiology and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil

Received 30 November 2012; Accepted 23 December 2012

Academic Editors: V. H. Aquino and M. R. T. Nunes

Copyright © 2013 Kleber Juvenal Silva Farias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.