About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 282734, 5 pages
http://dx.doi.org/10.1155/2013/282734
Research Article

Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

1Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
2Program of Graduate Studies on Applied Microbiology and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil

Received 30 November 2012; Accepted 23 December 2012

Academic Editors: V. H. Aquino and M. R. T. Nunes

Copyright © 2013 Kleber Juvenal Silva Farias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. L. da Fonseca and S. N. S. Fonseca, “Dengue virus infections,” Current Opinion in Pediatrics, vol. 14, no. 1, pp. 67–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. B. D. Lindenbach and C. M. Rice, “Molecular biology of flaviviruses,” Advances in Virus Research, vol. 59, pp. 23–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. de Duve, “Lysosomes revisited,” European Journal of Biochemistry, vol. 137, no. 3, pp. 391–397, 1983. View at Scopus
  4. A. C. Gomes-Ruiz, R. T. Nascimento, S. O. de Paula, and B. A. L. da Fonseca, “SYBR green and TaqMan real-time PCR assays are equivalent for the diagnosis of dengue virus type 3 infections,” Journal of Medical Virology, vol. 78, no. 6, pp. 760–763, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. H. S. H. Houng, R. C. Chen, D. W. Vaughn, and N. Kanesa-thasan, “Development of a fluorogenic RT-PCR system for quantitative identification of dengue virus serotypes 1–4 using conserved and serotype-specific 3' noncoding sequences,” Journal of Virological Methods, vol. 95, no. 1-2, pp. 19–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Keyaerts, L. Vijgen, P. Maes, J. Neyts, and M. V. Ranst, “In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine,” Biochemical and Biophysical Research Communications, vol. 323, no. 1, pp. 264–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. J. Vincent, E. Bergeron, S. Benjannet et al., “Chloroquine is a potent inhibitor of SARS coronavirus infection and spread,” Virology Journal, vol. 2, article 69, 10 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. di Trani, A. Savarino, L. Campitelli et al., “Different pH requirements are associated with divergent inhibitory effects of chloroquine on human and avian influenza A viruses,” Virology Journal, vol. 4, article 39, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. O. Eng, J. S. W. Chew, P. L. Jin, and R. C. S. Chua, “In vitro inhibition of human influenza A virus replication by chloroquine,” Virology Journal, vol. 3, article 39, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. W. K. Wang, D. Y. Chao, C. L. Kao et al., “High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis,” Virology, vol. 305, no. 2, pp. 330–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. F. C. Kull, “The TNF receptor in TNF-mediated cytotoxicity,” Natural Immunity and Cell Growth Regulation, vol. 7, no. 5, pp. 254–265, 1988. View at Scopus
  12. K. Sperber, T. H. Kalb, V. J. Stecher, R. Banerjee, and L. Mayer, “Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes,” AIDS Research and Human Retroviruses, vol. 9, no. 1, pp. 91–98, 1993. View at Scopus
  13. W. P. Tsai, P. L. Nara, H. F. Kung, and S. Oroszlan, “Inhibition of human immunodeficiency virus infectivity by chloroquine,” AIDS Research and Human Retroviruses, vol. 6, no. 4, pp. 481–489, 1990. View at Scopus
  14. J. M. Mackenzie and E. G. Westaway, “Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively,” Journal of Virology, vol. 75, no. 22, pp. 10787–10799, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Gubler, “Dengue and dengue hemorrhagic fever,” Clinical Microbiology Reviews, vol. 11, no. 3, pp. 480–496, 1998. View at Scopus
  16. K. Coombs, E. Mann, J. Edwards, and D. T. Brown, “Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus,” Journal of Virology, vol. 37, no. 3, pp. 1060–1065, 1981. View at Scopus
  17. R. Hernandez, T. Luo, and D. T. Brown, “Exposure to low pH is not required for penetration of mosquito cells by Sindbis virus,” Journal of Virology, vol. 75, no. 4, pp. 2010–2013, 2001. View at Publisher · View at Google Scholar · View at Scopus