About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 323948, 8 pages
http://dx.doi.org/10.1155/2013/323948
Research Article

Infrared Thermography in the Architectural Field

Department of Industrial Engineering, Aerospace Division, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy

Received 28 August 2013; Accepted 26 September 2013

Academic Editors: J. Kim and B. Kumar

Copyright © 2013 Carosena Meola. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. S. Beller, “Navy sees promise in infrared thermography for solid case checking,” Missiles and Rochets, vol. 16, no. 22, pp. 1234–1241, 1965.
  2. D. R. Green, “Principles and applications of emittance-independent infrared non-destructive testing,” Applied Optics, vol. 7, pp. 1779–1786, 1968.
  3. C. Cattaneo, “A form of heat conduction equation which eliminates the paradox of instantaneous propagation,” Comptes Rendues, vol. 247, pp. 431–433, 1958.
  4. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, UK, 1959.
  5. R. Rinaldi, “Infrared devices: short history and new trendspp,” in Infrared Thermography: Recent Advances and Future Trends, C. Meola, Ed., chapter 2, pp. 29–59, Bentham Science Publishers, Sharjah, UAE, 2012.
  6. V. Vavilov, T. Kauppinen, and E. Grinzato, “Thermal characterization of defects in building envelopes using long square pulse and slow thermal wave techniques,” Research in Nondestructive Evaluation, vol. 9, no. 4, pp. 181–200, 1997. View at Scopus
  7. D. Bjegovic, D. Mikulic, and D. Sekulic, “Non-destructive methods for monitoring reinforcing steel in concrete,” in Proceedings of the 9th International Conference Structural Faults Repair, London, 2001.
  8. M. Milazzo, N. Ludwig, and V. Redaelli, “Evaluation of evaporation flux in building materials by infrared thermography,” in Proceedings of the Quantitative Infrared Thermography (QIRT '02), D. Balageas, G. Busse, and G. M. Carlomagno, Eds., pp. 150–155, Dubrovnik, Croatia, 2002.
  9. G. M. Carlomagno and C. Meola, “Infrared thermography in the restoration of cultural properties,” in Thermosense XXIII, vol. 4360 of Proceedings of SPIE, pp. 203–216, usa, April 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Grinzato, “Thermography in cultural heritage conservation,” in Recent Advances in non Destructive Inspection, C. Meola, Ed., chapter 5, pp. 125–160, Nova Science Publisher, New York, NY, USA, 2010.
  11. G. M. Carlomagno, R. di Maio, C. Meola, and N. Roberti, “Infrared thermography and geophysical techniques in cultural heritage conservation,” Quantitative InfraRed Thermography Journal, vol. 2, pp. 5–24, 2005.
  12. C. Meola, R. di Maio, N. Roberti, and G. M. Carlomagno, “Application of infrared thermography and geophysical methods for defect detection in architectural structures,” Engineering Failure Analysis, vol. 12, no. 6, pp. 875–892, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. M. Carlomagno, R. di Maio, M. Fedi, and C. Meola, “Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys,” Journal of Geophysics and Engineering, vol. 8, no. 3, article S93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Meola and G. M. Carlomagno, “Application of infrared thermography to adhesion science,” Journal of Adhesion Science and Technology, vol. 20, no. 7, pp. 589–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. V. P. Vavilov, D. P. Almond, G. Busse et al., “Infrared thermographic detection and characterization of impact damage in carbon fibre composites: results of the round robin test,” in Proceedings of the Quantitative Infrared Thermography (QIRT 98), D. Balageas, G. Busse, and G. M. Carlomagno, Eds., pp. 43–52, Akademickie Centrum Graficzno-Marketingowe, Łódź, Poland, 1998.
  16. A. Lehto, J. Jaarinen, T. Tiusanen, M. Jokinen, and M. Luukkala, “Magnitude and phase in thermal wave imaging,” Electronics Letters, vol. 17, no. 11, pp. 364–365, 1981. View at Scopus
  17. C. A. Bennett Jr. and R. R. Patty, “Thermal wave interferometry: a potential application of the photoacoustic effect,” Applied Optics, vol. 21, no. 1, pp. 49–54, 1981. View at Scopus
  18. G. Busse, “Optoacoustic phase angle measurement for probing a metal,” Applied Physics Letters, vol. 35, no. 10, pp. 759–760, 1979. View at Publisher · View at Google Scholar · View at Scopus
  19. R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig, “Subsurface flaw detection in metals by photoacoustic microscopya,” Journal of Applied Physics, vol. 51, no. 2, pp. 1152–1156, 1980. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Meola, “Infrared thermography of masonry structures,” Infrared Physics and Technology, vol. 49, no. 3, pp. 228–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Grinzato, “State of the art and perspective of infrared thermography applied to building science,” in Infrared Thermography: Recent Advances and Future Trends, C. Meola, Ed., chapter 9, pp. 200–229, Bentham Science Publishers, Sharjah, UAE, 2012.