About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 491546, 12 pages
http://dx.doi.org/10.1155/2013/491546
Research Article

RhoA Regulation of Cardiomyocyte Differentiation

1Department of Microbiology, University of Oslo, Oslo University Hospital, Rikshospitalet, 0454 Oslo, Norway
2Cell Biology, Eskitis Institute for Cell and Molecular Therapies, and School of Biomolecular and Biomedical Science, Griffith University, Nathan, QD 4111, Australia
3Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, 0454 Oslo, Norway

Received 17 April 2013; Accepted 14 May 2013

Academic Editors: A. Aronheim, A. S. Balajee, and G. Min

Copyright © 2013 Mari Kaarbø et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kaarbø, D. I. Crane, and W. G. Murrell, “RhoA is highly up-regulated in the process of early heart development of the chick and important for normal embryogenesis,” Developmental Dynamics, vol. 227, no. 1, pp. 35–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. R. Magie, M. R. Meyer, M. S. Gorsuch, and S. M. Parkhurst, “Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development,” Development, vol. 126, no. 23, pp. 5353–5364, 1999. View at Scopus
  3. K. Wünnenberg-Stapleton, I. L. Blitz, C. Hashimoto, and K. W. Y. Cho, “Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development,” Development, vol. 126, no. 23, pp. 5339–5351, 1999. View at Scopus
  4. L. Wei, W. Roberts, L. Wang et al., “Rho kinases play an obligatory role in vertebrate embryonic organogenesis,” Development, vol. 128, no. 15, pp. 2953–2962, 2001. View at Scopus
  5. L. Wei, K. Imanaka-Yoshida, L. Wang et al., “Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation,” Development, vol. 129, no. 7, pp. 1705–1714, 2002. View at Scopus
  6. A. Habara-Ohkubo, “Differentiation of beating cardiac muscle cells from a derivative of P19 embryonal carcinoma cells,” Cell Structure and Function, vol. 21, no. 2, pp. 101–110, 1996. View at Scopus
  7. M. B. Shapiro and P. Senapathy, “RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression,” Nucleic Acids Research, vol. 15, no. 17, pp. 7155–7174, 1987. View at Publisher · View at Google Scholar · View at Scopus
  8. V. B. Bajic, V. Choudhary, and C. K. Hock, “Content analysis of the core promoter region of human genes,” In Silico Biology, vol. 4, no. 2, pp. 109–125, 2004. View at Scopus
  9. P. Remy, F. Sénan, D. Meyer, A. M. Mager, and C. Hindelang, “Overexpression of the Xenopus XI-fli gene during early embryogenesis leads to anomalies in head and heart development and erythroid differentiation,” International Journal of Developmental Biology, vol. 40, no. 3, pp. 577–589, 1996. View at Scopus
  10. D. P. Szeto, K. J. P. Griffin, and D. Kimelman, “HrT is required for cardiovascular development in zebrafish,” Development, vol. 129, no. 21, pp. 5093–5101, 2002. View at Scopus
  11. Y. H. Lee, H. D. Campbell, and M. R. Stallcup, “Developmentally essential protein flightless I is a nuclear receptor coactivator with actin binding activity,” Molecular and Cellular Biology, vol. 24, no. 5, pp. 2103–2117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Faisst and S. Meyer, “Compilation of vertebrate-encoded transcription factors,” Nucleic Acids Research, vol. 20, no. 1, pp. 3–26, 1992. View at Scopus
  13. D. Vara, K. A. Bicknell, C. H. Coxon, and G. Brooks, “Inhibition of E2F abrogates the development of cardiac myocyte hypertrophy,” Journal of Biological Chemistry, vol. 278, no. 24, pp. 21388–21394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. E. Heid, M. K. Walker, and H. I. Swanson, “Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation,” Toxicological Sciences, vol. 61, no. 1, pp. 187–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. K. Walker, R. S. Pollenz, and S. M. Smith, “Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced heart defects,” Toxicology and Applied Pharmacology, vol. 143, no. 2, pp. 407–419, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Compernolle, K. Brusselmans, D. Franco et al., “Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1α,” Cardiovascular Research, vol. 60, no. 3, pp. 569–579, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ladoux and C. Frelin, “Cardiac expressions of HIF-1α and HLF/EPAS, two basic loop Helix/PAS domain transcription factors involved in adaptative responses to hypoxic stresses,” Biochemical and Biophysical Research Communications, vol. 240, no. 3, pp. 552–556, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. X. Li, M. Zdanowicz, L. Young, D. Kumiski, L. Leatherbury, and M. L. Kirby, “Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function,” Developmental Dynamics, vol. 226, no. 3, pp. 540–550, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. D. P. Huynh, T. Nechiporuk, and S. M. Pulst, “Differential expression and tissue distribution of type I and type II neurofibromins during mouse fetal development,” Developmental Biology, vol. 161, no. 2, pp. 538–551, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. C. I. Brannan, A. S. Perkins, K. S. Vogel et al., “Targeted disruption of the neurofibromatosis type 1 gene leads to developmental abnormalities of the heart and various neural crest-derived tissues,” Genes and Development, vol. 8, no. 1019, p. 1029, 1994. View at Scopus
  21. Y. Suzuki, T. Tsunoda, J. Sese et al., “Identification and characterization of the potential promoter regions of 1031 kinds of human genes,” Genome Research, vol. 11, no. 5, pp. 677–684, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Sauzeau, M. Rolli-Derkinderen, C. Marionneau, G. Loirand, and P. Pacaud, “RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9472–9480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Thorburn, S. Xu, and A. Thorburn, “MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells,” EMBO Journal, vol. 16, no. 8, pp. 1888–1900, 1997. View at Publisher · View at Google Scholar · View at Scopus