About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 507872, 10 pages
http://dx.doi.org/10.1155/2013/507872
Research Article

Calcium Transient and Sodium-Calcium Exchange Current in Human versus Rabbit Sinoatrial Node Pacemaker Cells

1Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
2Laboratory of Clinical Chemistry and Hematology, Jeroen Bosch Hospital, Henri Dunantstraat 1, 5223 GZ 's-Hertogenbosch, The Netherlands

Received 11 January 2013; Accepted 7 February 2013

Academic Editors: Y. Du and Y. Wang

Copyright © 2013 Arie O. Verkerk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Mangoni and J. Nargeot, “Genesis and regulation of the heart automaticity,” Physiological Reviews, vol. 88, no. 3, pp. 919–982, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. G. Lakatta, V. A. Maltsev, and T. M. Vinogradova, “A Coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker,” Circulation Research, vol. 106, no. 4, pp. 659–673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. E. G. Lakatta and D. DiFrancesco, “What keeps us ticking: a funny current, a calcium clock, or both?” Journal of Molecular and Cellular Cardiology, vol. 47, no. 2, pp. 157–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. DiFrancesco and D. Noble, “The funny current has a major pacemaking role in the sinus node,” Heart Rhythm, vol. 9, no. 2, pp. 299–301, 2012.
  5. V. A. Maltsev and E. G. Lakatta, “The funny current in the context of the coupled-clock pacemaker cell system,” Heart Rhythm, vol. 9, no. 2, pp. 302–307, 2012.
  6. D. DiFrancesco and D. Noble, “Rebuttal: The funny current in the context of the coupled clock pacemaker cell system,” Heart Rhythm, vol. 9, no. 3, pp. 457–458, 2012.
  7. E. G. Lakatta and V. A. Maltsev, “Rebuttal: what If the shoe doesn’t fit? The funny current has a major pacemaking role in the sinus node,” Heart Rhythm, vol. 9, no. 3, pp. 459–460, 2012.
  8. N. J. Chandler, I. D. Greener, J. O. Tellez et al., “Molecular architecture of the human sinus node insights into the function of the cardiac pacemaker,” Circulation, vol. 119, no. 12, pp. 1562–1575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. O. Verkerk, R. Wilders, M. M. G. J. van Borren et al., “Pacemaker current (If) in the human sinoatrial node,” European Heart Journal, vol. 28, no. 20, pp. 2472–2478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. O. Verkerk, R. Wilders, M. M. G. J. van Borren, and H. L. Tan, “Is sodium current present in human sinoatrial node cells?” International Journal of Biological Sciences, vol. 5, no. 2, pp. 201–204, 2009. View at Scopus
  11. H. Dobrzynski, M. R. Boyett, and R. H. Anderson, “New insights into pacemaker activity: promoting understanding of sick sinus syndrome,” Circulation, vol. 115, no. 14, pp. 1921–1932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. O. Verkerk, A. C. G. van Ginneken, and R. Wilders, “Pacemaker activity of the human sinoatrial node: role of the hyperpolarization-activated current, If,” International Journal of Cardiology, vol. 132, no. 3, pp. 318–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Zareba, A. J. Moss, P. J. Schwartz et al., “Influence of the genotype on the clinical course of the long-QT syndrome,” The New England Journal of Medicine, vol. 339, no. 14, pp. 960–965, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Swan, M. Viitasalo, K. Piippo, P. Laitinen, K. Kontula, and L. Toivonen, “Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects,” Journal of the American College of Cardiology, vol. 34, no. 3, pp. 823–829, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Leenhardt, I. Denjoy, and P. Guicheney, “Catecholaminergic polymorphic ventricular tachycardia,” Circulation Arrhythmia and Electrophysiology, vol. 5, no. 5, pp. 1044–1052, 2012.
  16. A. Leenhardt, V. Lucet, I. Denjoy, F. Grau, Dien Do Ngoc, and P. Coumel, “Catecholaminergic polymorphic ventricular tachycardia in children: a 7-year follow-up of 21 patients,” Circulation, vol. 91, no. 5, pp. 1512–1519, 1995. View at Scopus
  17. N. Sumitomo, K. Harada, M. Nagashima et al., “Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death,” Heart, vol. 89, no. 1, pp. 66–70, 2003. View at Scopus
  18. A. V. Postma, I. Denjoy, T. M. Hoorntje et al., “Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia,” Circulation Research, vol. 91, no. 8, pp. e21–e26, 2002. View at Scopus
  19. A. V. Postma, I. Denjoy, J. Kamblock et al., “Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients,” Journal of Medical Genetics, vol. 42, no. 11, pp. 863–870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Courtemanche, R. J. Ramirez, and S. Nattel, “Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model,” American Journal of Physiology, vol. 275, no. 1, pp. H301–H321, 1998. View at Scopus
  21. E. A. Allah, J. O. Tellez, J. Yanni et al., “Changes in the expression of ion channels, connexins and Ca2+-handling proteins in the sino-atrial node during postnatal development,” Experimental Physiology, vol. 96, no. 4, pp. 426–438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. O. Verkerk, H. M. den Ruijter, J. Bourier et al., “Dietary fish oil reduces pacemaker current and heart rate in rabbit,” Heart Rhythm, vol. 6, no. 10, pp. 1485–1492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. G. J. van Borren, A. O. Verkerk, R. Wilders et al., “Effects of muscarinic receptor stimulation on Ca2+ transient, cAMP production and pacemaker frequency of rabbit sinoatrial node cells,” Basic Research in Cardiology, vol. 105, no. 1, pp. 73–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544, 1952. View at Scopus
  25. S. Dokos, B. Celler, and N. Lovell, “Ion currents underlying sinoatrial node pacemaker activity: a new single cell mathematical model,” Journal of Theoretical Biology, vol. 181, no. 3, pp. 245–272, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. A. C. G. van Ginneken and W. Giles, “Voltage clamp measurements of the hyperpolarization-activated inward current If in single cells from rabbit sino-atrial node,” Journal of Physiology, vol. 434, pp. 57–83, 1991. View at Scopus
  27. Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, “Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell,” American Journal of Physiology Heart and Circulatory Physiology, vol. 283, no. 5, pp. H2074–H2101, 2002. View at Scopus
  28. V. A. Maltsev and E. G. Lakatta, “Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model,” American Journal of Physiology Heart and Circulatory Physiology, vol. 296, no. 3, pp. H594–H615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. O. Verkerk, M. M. G. J. van Borren, R. J. G. Peters, et al., “Single cells isolated from human sinoatrial node: action potentials and numerical reconstruction of pacemaker current,” in Proceedings of the 29th Annual International Conference of Engineering in Medicine and Biology Society (EMBC ’07), pp. 904–907, August 2007.
  30. A. O. Verkerk and R. Wilders, “Relative importance of funny current in human versus rabbit sinoatrial node,” Journal of Molecular and Cellular Cardiology, vol. 48, no. 4, pp. 799–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. G. J. van Borren, J. G. Zegers, A. O. Verkerk, and R. Wilders, “Computational model of rabbit SA node pacemaker activity probed with action potential and calcium transient clamp,” in Proceedings of the 29th Annual International Conference of Engineering in Medicine and Biology Society (EMBC '07), pp. 156–159, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. D. S. Lindblad, C. R. Murphey, J. W. Clark, and W. R. Giles, “A model of the action potential and underlying membrane currents in a rabbit atrial cell,” American Journal of Physiology, vol. 271, no. 4, part 2, pp. H1666–H1696, 1996. View at Scopus
  33. R. Wilders and H. J. Jongsma, “Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node,” Biophysical Journal, vol. 65, no. 6, pp. 2601–2613, 1993. View at Scopus
  34. A. Zaza, M. Micheletti, A. Brioschi, and M. Rocchetti, “Ionic currents during sustained pacemaker activity in rabbit sino-atrial myocytes,” Journal of Physiology, vol. 505, no. 3, pp. 677–688, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. M. S. Imtiaz, P. Y. von der Weid, D. R. Laver, and D. F. van Helden, “SR Ca2+ store refill-a key factor in cardiac pacemaking,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 3, pp. 412–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. T. M. Vinogradova, S. Sirenko, A. E. Lyashkov et al., “Constitutive phosphodiesterase activity restricts spontaneous beating rate of cardiac pacemaker cells by suppressing local Ca2+ releases,” Circulation Research, vol. 102, no. 7, pp. 761–769, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. M. Faber and Y. Rudy, “Action potential and contractility changes [Na+]i in overloaded cardiac myocytes: a simulation study,” Biophysical Journal, vol. 78, no. 5, pp. 2392–2404, 2000. View at Scopus