About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 626103, 5 pages
http://dx.doi.org/10.1155/2013/626103
Research Article

Shear Bond Strengths of Different Adhesive Systems to Biodentine

1Department of Pediatric Dentistry, Faculty of Dentistry, University of Gazi, 8 Cadde, 82 Sokak, 06510 Ankara, Turkey
2Department of Pediatric Dentistry, Faculty of Dentistry, University of Başkent, 06490 Ankara, Turkey

Received 5 August 2013; Accepted 5 September 2013

Academic Editors: E. J. Honkala and R. G. Palma-Dibb

Copyright © 2013 Mesut Enes Odabaş et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-J. Lee, M. Monsef, and M. Torabinejad, “Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations,” Journal of Endodontics, vol. 19, no. 11, pp. 541–544, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Parirokh and M. Torabinejad, “Mineral trioxide aggregate: a comprehensive literature review-part I: chemical, physical, and antibacterial properties,” Journal of Endodontics, vol. 36, no. 1, pp. 16–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Dammaschke, H. U. V. Gerth, H. Züchner, and E. Schäfer, “Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements,” Dental Materials, vol. 21, no. 8, pp. 731–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Laurent, J. Camps, M. De Méo, J. Déjou, and I. About, “Induction of specific cell responses to a Ca3SiO5-based posterior restorative material,” Dental Materials, vol. 24, no. 11, pp. 1486–1494, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Laurent, J. Camps, and I. About, “BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization,” International Endodontic Journal, vol. 45, no. 5, pp. 439–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. X. V. Tran, C. Gorin, C. Willig, et al., “Effect of a calcium-silicate-based restorative cement on pulp repair,” Journal of Dental Research, vol. 91, no. 12, pp. 1166–1171, 2012.
  7. A. Nowicka, M. Lipski, M. Parafiniuk, et al., “Response of human dental pulp capped with biodentine and mineral trioxide aggregate,” Journal of Endodontics, vol. 39, no. 6, pp. 743–747, 2013.
  8. X. Wang, H. Sun, and J. Chang, “Characterization of Ca3SiO5/CaCl2 composite cement for dental application,” Dental Materials, vol. 24, no. 1, pp. 74–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C.-C. Chen, C.-C. Ho, C.-H. David Chen, and S.-J. Ding, “Physicochemical properties of calcium silicate cements for endodontic treatment,” Journal of Endodontics, vol. 35, no. 9, pp. 1288–1291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhao, J. Wang, W. Zhai, Z. Wang, and J. Chang, “The self-setting properties and in vitro bioactivity of tricalcium silicate,” Biomaterials, vol. 26, no. 31, pp. 6113–6121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Camilleri, “The physical properties of accelerated Portland cement for endodontic use,” International Endodontic Journal, vol. 41, no. 2, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Ş. Tunç, I. Ş. Ş. Sönmez, Ş. Bayrak, and T. Eǧilmez, “The Evaluation of Bond Strength of a Composite and a Compomer to White Mineral Trioxide Aggregate with Two Different Bonding Systems,” Journal of Endodontics, vol. 34, no. 5, pp. 603–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Ş. Bayrak, E. Ş. Tunç, I. Şaroǧlu, and T. Eǧilmez, “Shear bond strengths of different adhesive systems to white mineral trioxide aggregate,” Dental Materials Journal, vol. 28, no. 1, pp. 62–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Neelakantan, D. Grotra, C. V. Subbarao, and F. Garcia-Godoy, “The shear bond strength of resin-based composite to white mineral trioxide aggregate,” The Journal of American Dental Association, vol. 143, no. 8, pp. e40–e45, 2012.
  15. M. A. P. Borges, I. C. Matos, and K. R. H. C. Dias, “Influence of two self-etching primer systems on enamel adhesion,” Brazilian Dental Journal, vol. 18, no. 2, pp. 113–118, 2007. View at Scopus
  16. R. W. Arnold, E. C. Combe, and J. H. Warford Jr., “Bonding of stainless steel brackets to enamel with a new self-etching primer,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 122, no. 3, pp. 274–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Cacciafesta, M. F. Sfondrini, M. De Angelis, A. Scribante, and C. Klersy, “Effect of water and saliva contamination on shear bond strength of brackets bonded with conventional, hydrophilic, and self-etching primers,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 123, no. 6, pp. 633–640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Dorminey, W. J. Dunn, and L. J. Taloumis, “Shear bond strength of orthodontic brackets bonded with a modified 1-step etchant-and-primer technique,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 124, no. 4, pp. 410–413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. E. Bishara, L. VonWald, J. F. Laffoon, and J. J. Warren, “Effect of a self-etch primer/adhesive on the shear bond strength of orthodontic brackets,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 119, no. 6, pp. 621–624, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. S. E. Bishara, R. Ajlouni, J. F. Laffoon, and J. J. Warren, “Effect of a Fluoride-Releasing Self-Etch Acidic Primer on the Shear Bond Strength of Orthodontic Brackets,” Angle Orthodontist, vol. 72, no. 3, pp. 199–202, 2002. View at Scopus
  21. R. Yamada, T. Hayakawa, and K. Kasai, “Effect of using self-etching primer for bonding orthodontic brackets,” Angle Orthodontist, vol. 72, no. 6, pp. 558–564, 2002. View at Scopus
  22. I. L. Zeppieri, C.-H. Chung, and F. K. Mante, “Effect of saliva on shear bond strength of an orthodontic adhesive used with moisture-insensitive and self-etching primers,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 124, no. 4, pp. 414–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Bouillaguet, P. Gysi, J. C. Wataha et al., “Bond strength of composite to dentin using conventional, one-step, and self-etching adhesive systems,” Journal of Dentistry, vol. 29, no. 1, pp. 55–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Kaaden, J. M. Powers, K.-H. Friedl, and G. Schmalz, “Bond strength of self-etching adhesives to dental hard tissues,” Clinical oral investigations, vol. 6, no. 3, pp. 155–160, 2002. View at Scopus
  25. J. De Munck, B. Van Meerbeek, I. Satoshi et al., “Microtensile bond strengths of one- and two-step self-etch adhesives to bur-cut enamel and dentin,” American Journal of Dentistry, vol. 16, no. 6, pp. 414–420, 2003. View at Scopus
  26. S. Inoue, M. A. Vargas, Y. Abe et al., “Microtensile bond strength of eleven contemporary adhesives to dentin,” Journal of Adhesive Dentistry, vol. 3, no. 3, pp. 237–245, 2001. View at Scopus