About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 650791, 6 pages
http://dx.doi.org/10.1155/2013/650791
Research Article

Freeze-Thaw Durability of Air-Entrained Concrete

1School of Civil Engineering, Qingdao Technological University, Qingdao 266033, China
2State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
3School of Civil Engineering, Dalian University of Technology, Dalian 116024, China

Received 3 January 2013; Accepted 2 February 2013

Academic Editors: S. Chen, M. Jha, Q. Q. Liang, and E. Lui

Copyright © 2013 Huai-Shuai Shang and Ting-Hua Yi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Richardson, K. A. Coventry, and S. Wilkinson, “Freeze/thaw durability of concrete with synthetic fibre additions,” Cold Regions Science and Technology, vol. 83-84, pp. 49–56, 2012. View at Publisher · View at Google Scholar
  2. C. Medina, M. I. S. de Rojas, and M. Frias, “Freeze-thaw durability of recycled concrete containing ceramic aggregate,” Journal of Cleaner Production, vol. 40, pp. 151–160, 2013. View at Publisher · View at Google Scholar
  3. B. Mather, “Concrete durability,” Cement and Concrete Composites, vol. 26, no. 1, pp. 3–4, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Hong-Qiang, Z. Lei-shun, and L. Ping-xian, “The influence of freeze-thaw to concrete strength,” Henan Science, vol. 21, no. 2, pp. 214–216, 2003 (Chinese).
  5. Q. Li-kun, Study on the strength and deformation of concrete under multiaxial stress after high-temperature of freeze-thaw cycling [Ph.D. thesis], Dalian University of Technology, Liaoning, China, 2003.
  6. Sun, Zhang, Yan, and Mu, “Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles,” Cement and Concrete Research, vol. 29, no. 9, pp. 1519–1523, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Zaharieva, F. Buyle-Bodin, and E. Wirquin, “Frost resistance of recycled aggregate concrete,” Cement and Concrete Research, vol. 34, no. 10, pp. 1927–1932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Sun, R. Mu, X. Luo, and C. Miao, “Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete,” Cement and Concrete Research, vol. 32, no. 12, pp. 1859–1864, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Cohen, Yixia, and Dolch, “Non-air-entrained high-strength concrete-is it frost resistant?” ACI Materials Journal, vol. 89, no. 4, pp. 406–415, 1992. View at Scopus
  10. M. Molero, S. Aparicio, G. Al-Assadi, M. J. Casati, M. G. Hernández, and J. J. Anaya, “Evaluation of freeze-thaw damage in concrete by ultrasonic imaging,” NDT & E International, vol. 52, pp. 86–94, 2012.
  11. R. Sahin, M. A. Tasdemir, R. Guel, and C. Celik, “Optimization study and damage evaluation in concrete mixtures exposed to slow freeze-thaw cycles,” Journal of Materials in Civil Engineering, vol. 19, no. 7, pp. 609–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Atkins, “Physical deterioration mechanisms,” in Concrete Durability: A Practical Guide to the Design of Durable Concrete Structures, M. Soutsos, Ed., ThomasTelford, London, UK, 2010.
  13. G.-F. Peng, Q. Ma, H.-M. Hu, R. Gao, Q.-F. Yao, and Y.-F. Liu, “The effects of airentrainment and pozzolans on frost resistance of 50-60 MPa grade concrete,” Construction and Building Materials, vol. 21, no. 5, pp. 1034–1039, 2007. View at Publisher · View at Google Scholar
  14. National Standard of the People's Republic of China, “The test method of long-term and durability on ordinary concrete,” Tech. Rep. GB/T50082-2009, National Standard of the People's Republic of China, Beijing, China, 2009.
  15. National Standard of the People's Republic of China, “Portland cement and ordinary portland cement,” Tech. Rep. GB175-99, National Standard of the People's Republic of China, Beijing, China, 1999.
  16. H. Shang, Y. Song, and L. Qin, “Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles,” Building and Environment, vol. 43, no. 7, pp. 1197–1204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. National Standard of the People's Republic of China, “Testing code of concrete for port and Waterwog engineering,” Tech. Rep. JTJ 270-98, National Standard of the People's Republic of China, Beijing, China, 1999.