About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 658292, 7 pages
http://dx.doi.org/10.1155/2013/658292
Research Article

Octagonal Defects at Carbon Nanotube Junctions

1Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
2Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
3Centro de Física de Materiales CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), Departamento de Física de Materiales, Facultad de Químicas, UPV-EHU, 20018 San Sebastián, Spain

Received 24 June 2013; Accepted 1 August 2013

Academic Editors: P. K. Jha, S. Sahoo, B. Wang, and C. Wang

Copyright © 2013 W. Jaskólski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Lambin, A. Fonseca, J. P. Vigneron, J. B. Nagy, and A. A. Lucas, “Structural and electronic properties of bent carbon nanotubes,” Chemical Physics Letters, vol. 245, no. 1, pp. 85–89, 1995. View at Scopus
  2. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, “Pure carbon nanoscale devices: nanotube heterojunctions,” Physical Review Letters, vol. 76, no. 6, pp. 971–974, 1996. View at Scopus
  3. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Tunneling conductance of connected carbon nanotubes,” Physical Review B, vol. 53, no. 4, pp. 2044–2050, 1996. View at Scopus
  4. P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube nanodevice,” Science, vol. 278, no. 5335, pp. 100–103, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Ferreira, T. G. Dargam, R. B. Muniz, and A. Latge, “Local electronic properties of carbon nanotube heterojunctions,” Physical Review B, vol. 62, no. 23, pp. 16040–16045, 2000.
  6. L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, “Quantum conductance of carbon nanotubes with defects,” Physical Review B, vol. 54, no. 4, pp. 2600–2606, 1996. View at Scopus
  7. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, no. 6680, pp. 49–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Chico and W. Jaskólski, “Localized states and conductance gaps in metallic carbon nanotubes,” Physical Review B, vol. 69, no. 8, Article ID 085406, 2004.
  9. L. Chico, M. P. L. López Sancho, and M. C. Muñoz, “Carbon-nanotube-based quantum dot,” Physical Review Letters, vol. 81, no. 6, pp. 1278–1281, 1998.
  10. W. Jaskólski and L. Chico, “Localized and conducting states in carbon nanotube superlattices,” Physical Review B, vol. 71, no. 15, Article ID 155405, 2005.
  11. H.-J. Shin, S. Clair, Y. Kim, and M. Kawai, “Substrate-induced array of quantum dots in a single-walled carbon nanotube,” Nature Nanotechnology, vol. 4, no. 9, pp. 567–570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Menon and D. Srivastava, “Carbon nanotube based molecular electronic devices,” Journal of Materials Research, vol. 13, no. 9, pp. 2357–2362, 1998. View at Scopus
  13. H. Santos, A. Ayuela, W. Jaskólski, M. Pelc, and L. Chico, “Interface states in achiral carbon nanotube junctions: rolling up graphene,” Physical Review B, vol. 80, Article ID 035436, 2009.
  14. W. Jaskólski, A. Ayuela, M. Pelc, H. Santos, and L. Chico, “Edge states and flat bands in graphene nanoribbons with arbitrary geometries,” Physical Review B, vol. 83, no. 23, Article ID 235424, 2011.
  15. A. N. Andriotis, M. Menon, D. Srivastava, and L. Chernozatonskii, “Transport properties of single-wall carbon nanotube Y junctions,” Physical Review B, vol. 65, no. 16, Article ID 165416, 2002.
  16. M. Menon, A. N. Andriotis, D. Srivastava, I. Ponomareva, and L. A. Chernozatonskii, “Carbon nanotube “T junctions”: formation pathways and conductivity,” Physical Review Letters, vol. 91, no. 14, Article ID 145501, 2003. View at Scopus
  17. D. Grimm, P. Venezuela, F. Banhart et al., “Synthesis of SWCNT rings made by two Y junctions and possible applications in electron interferometry,” Small, vol. 3, no. 11, pp. 1900–1905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, “An extended defect in graphene as a metallic wire,” Nature Nanotechnology, vol. 5, no. 5, pp. 326–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pelc, L. Chico, A. Ayuela, and W. Jaskólski, “Grain boundaries with octagonal defects in graphene nanoribbons and nanotubes,” Physical Review B, vol. 87, no. 16, Article ID 165427, 2013.
  20. A. Ayuela, L. Chico, and W. Jaskólski, “Electronic band structure of carbon nanotube superlattices from first-principles calculations,” Physical Review B, vol. 77, no. 8, Article ID 085435, 2008.
  21. M. P. López Sancho, M. C. Muñoz, and L. Chico, “Coulomb interactions in carbon nanotubes,” Physical Review B, vol. 63, Article ID 165419, 2001.
  22. J. Fernández-Rossier and J. J. Palacios, “Magnetism in graphene nanoislands,” Physical Review Letters, vol. 99, no. 17, Article ID 177204, 2007.
  23. L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, “Quasiparticle energies and band gaps of graphene nanoribbons,” Physical Review Letters, vol. 99, Article ID 186801, 2007.
  24. H. Santos, L. Chico, and L. Brey, “Carbon nanoelectronics: unzipping tubes into graphene ribbons,” Physical Review Letters, vol. 103, no. 8, Article ID 086801, 2009.
  25. J. J. Palacios, J. Fernández-Rossier, and L. Brey, “Vacancy-induced magnetism in graphene and graphene ribbons,” Physical Review B, vol. 77, Article ID 195428, 2008.
  26. W. Jaskólski, M. Pelc, H. Santos, L. Chico, and A. Ayuela, “Interface bands in carbon nanotube superlattices,” Physica Status Solidi C, vol. 7, no. 2, pp. 382–385, 2010. View at Publisher · View at Google Scholar · View at Scopus