About this Journal Submit a Manuscript Table of Contents
The Scientific World Journal
Volume 2013 (2013), Article ID 675851, 10 pages
http://dx.doi.org/10.1155/2013/675851
Review Article

Prediction of Deleterious Nonsynonymous Single-Nucleotide Polymorphism for Human Diseases

MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China

Received 27 October 2012; Accepted 11 December 2012

Academic Editors: C. Proctor and R. Rivas

Copyright © 2013 Jiaxin Wu and Rui Jiang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Bromberg and B. Rost, “SNAP: predict effect of non-synonymous polymorphisms on function,” Nucleic Acids Research, vol. 35, no. 11, pp. 3823–3835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Ramensky, P. Bork, and S. Sunyaev, “Human non-synonymous SNPs: server and survey,” Nucleic Acids Research, vol. 30, no. 17, pp. 3894–3900, 2002. View at Scopus
  3. J. Wu, M. Gan, and R. Jiang, “Prioritisation of candidate single amino acid polymorphisms using one-class learning machines,” International Journal of Computational Biology and Drug Design, vol. 4, no. 4, pp. 316–331, 2011.
  4. G. M. Cooper and J. Shendure, “Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data,” Nature Reviews Genetics, vol. 12, pp. 628–640, 2011. View at Publisher · View at Google Scholar
  5. J. M. Schwarz, C. Rödelsperger, M. Schuelke, and D. Seelow, “MutationTaster evaluates disease-causing potential of sequence alterations,” Nature Methods, vol. 7, no. 8, pp. 575–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Nakken, I. Alseth, and T. Rognes, “Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes,” Neuroscience, vol. 145, no. 4, pp. 1273–1279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Krawczak, E. V. Ball, I. Fenton, et al., “Human gene mutation database—a biomedical information and research resource,” Human Mutation, vol. 15, no. 1, pp. 45–51, 2000.
  8. P. C. Ng and S. Henikoff, “Predicting the effects of amino acid substitutions on protein function,” Annual Review of Genomics and Human Genetics, vol. 7, pp. 61–80, 2006. View at Publisher · View at Google Scholar
  9. X. Liu, X. Jian, and E. Boerwinkle, “dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions,” Human Mutation, vol. 32, no. 8, pp. 894–899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Siepel, K. Pollard, and D. Haussler, “New methods for detecting lineage-specific selection,” in Proceedings of the 10th International Conference on Research in Computational Molecular Biology (RECOMB '06), pp. 190–205, Venice, Italy, 2006.
  11. R. Jiang, H. Yang, L. Zhou, C. C. J. Kuo, F. Sun, and T. Chen, “Sequence-based prioritization of nonsynonymous single-nucleotide polymorphisms for the study of disease mutations,” American Journal of Human Genetics, vol. 81, no. 2, pp. 346–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. Stenson, E. V. Ball, M. Mort et al., “Human Gene Mutation Database (HGMD): 2003 update,” Human Mutation, vol. 21, no. 6, pp. 577–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. U. Consortium, “The universal protein resource (UniProt) in 2010,” Nucleic Acids Research, vol. 38, pp. D142–D148, 2010.
  14. D. Fredman, M. Siegfried, Y. P. Yuan, P. Bork, H. Lehväslaiho, and A. J. Brookes, “HGVbase: a human sequence variation database emphasizing data quality and a broad spectrum of data sources,” Nucleic Acids Research, vol. 30, no. 1, pp. 387–391, 2002. View at Scopus
  15. S. T. Sherry, M. H. Ward, M. Kholodov et al., “DbSNP: the NCBI database of genetic variation,” Nucleic Acids Research, vol. 29, no. 1, pp. 308–311, 2001. View at Scopus
  16. T. Kawabata, M. Ota, and K. Nishikawa, “The protein mutant database,” Nucleic Acids Research, vol. 27, no. 1, pp. 355–357, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Kumar, S. Henikoff, and P. C. Ng, “Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm,” Nature Protocols, vol. 4, no. 7, pp. 1073–1081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. I. A. Adzhubei, S. Schmidt, L. Peshkin et al., “A method and server for predicting damaging missense mutations,” Nature Methods, vol. 7, no. 4, pp. 248–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chun and J. C. Fay, “Identification of deleterious mutations within three human genomes,” Genome Research, vol. 19, no. 9, pp. 1553–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Jiaxin, G. Mingxin, Z. Wangshu, and J. Rui, “Prediction of disease-associated single amino acid polymorphisms based on physiochemical features,” International Journal of Bioscience, Biochemistry and Bioinformatics, vol. 1, no. 2, pp. 102–108, 2011.
  21. L. Kjong-Van and C. Ting, “Exploring functional variant discovery in non-coding regions with SInBaD,” Nucleic Acids Research, vol. 41, no. 1, p. e7, 2013. View at Publisher · View at Google Scholar
  22. A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. McKusick, “Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders,” Nucleic Acids Research, vol. 33, pp. D514–D517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. X. Li, H. S. Gui, J. S. H. Kwan, et al., “A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases,” Nucleic Acids Research, vol. 40, no. 7, p. e53, 2012. View at Publisher · View at Google Scholar
  24. G. M. Cooper, D. L. Goode, S. B. Ng et al., “Single-nucleotide evolutionary constraint scores highlight disease-causing mutations,” Nature Methods, vol. 7, no. 4, pp. 250–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Schlessinger, G. Yachdav, and B. Rost, “PROFbval: predict flexible and rigid residues in proteins,” Bioinformatics, vol. 22, no. 7, pp. 891–893, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. Sunyaev, F. Eisenhaber, I. V. Rodchenkov, B. Eisenhaber, V. G. Tumanyan, and E. N. Kuznetsov, “PSIC: profile extraction from sequence alignments with position-specific counts of independent observations,” Protein Engineering, vol. 12, no. 5, pp. 387–394, 1999. View at Scopus
  28. D. Chasman and R. M. Adams, “Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation,” Journal of Molecular Biology, vol. 307, no. 2, pp. 683–706, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. P. C. Ng and S. Henikoff, “Predicting deleterious amino acid substitutions,” Genome Research, vol. 11, pp. 863–874, 2001. View at Publisher · View at Google Scholar
  30. P. Yue, Z. Li, and J. Moult, “Loss of protein structure stability as a major causative factor in monogenic disease,” Journal of Molecular Biology, vol. 353, no. 2, pp. 459–473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. R. Sunyaev, V. Ramensky, I. Koch, W. I. Lathe, A. S. Kondrashov, and P. Bork, “Prediction of deleterious human alleles,” Human Molecular Genetics, vol. 10, no. 6, pp. 591–597, 2001. View at Scopus
  32. S. Sunyaev, V. Ramensky, I. Koch, W. Lathe III, A. S. Kondrashov, and P. Bork, “Prediction of deleterious human alleles,” Human Molecular Genetics, vol. 10, no. 6, pp. 591–597, 2001. View at Scopus
  33. Z. Wang and J. Moult, “SNPs, protein structure, and disease,” Human Mutation, vol. 17, no. 4, pp. 263–270, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Chasman and R. M. Adams, “Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation,” Journal of Molecular Biology, vol. 307, no. 2, pp. 683–706, 2001. View at Publisher · View at Google Scholar
  35. W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983. View at Scopus
  36. A. Momen-Roknabadi, M. Sadeghi, H. Pezeshk, and S. A. Marashi, “Impact of residue accessible surface area on the prediction of protein secondary structures,” BMC Bioinformatics, vol. 9, article 357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Adamczak, A. Porollo, and J. Meller, “Combining prediction of secondary structure and solvent accessibility in proteins,” Proteins, vol. 59, no. 3, pp. 467–475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Ferrer-Costa, M. Orozco, and X. de la Cruz, “Sequence-based prediction of pathological mutations,” Proteins, vol. 57, no. 4, pp. 811–819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Cambien, O. Poirier, V. Nicaud et al., “Sequence diversity in 36 candidate genes for cardiovascular disorders,” American Journal of Human Genetics, vol. 65, no. 1, pp. 183–191, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Wu, W. Zhang, and R. Jiang, “Comparative study of ensemble learning approaches in the identification of disease mutations,” in Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics (BMEI '10), vol. 6, pp. 2306–2310, Yantai, China, October 2010.