About this Journal Submit a Manuscript Table of Contents
RETRACTED
This article has been retracted as it is found to contain a substantial amount of material from a number of previously published papers. The three most plagiarized papers are: (1) K. I. Hidari and T. Suzuki, “Dengue virus receptor,” Tropical Medicine and Health, vol. 39, no. 4, supplement, pp. 37–43, 2011. (2) A. Cabrera-Hernandez and D. R. Smith, “Mammalian dengue virus receptors,” Dengue Bulletin, vol. 29, no. 662, pp. 119–135, 2005. (3) A. Cabrera-Hernandez, C.Thepparit, L. Suksanpaisan, and D. R. Smith, “Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70,” Journal of Medical Virology, vol. 79, no. 4, pp. 386–392, 2007.
The Scientific World Journal
Volume 2013 (2013), Article ID 684690, 6 pages
http://dx.doi.org/10.1155/2013/684690
Review Article

Recent Advances in DENV Receptors

Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China

Received 27 February 2013; Accepted 3 April 2013

Academic Editors: G. Borkow and E. J. Im

Copyright © 2013 Shuyu Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. C. McMinn, “The molecular basis of virulence of the encephalitogenic flaviviruses,” Journal of General Virology, vol. 78, no. 11, pp. 2711–2722, 1997. View at Scopus
  2. J. F. L. Chin, J. J. H. Chu, and M. L. Ng, “The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry,” Microbes and Infection, vol. 9, no. 1, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Stiasny, C. Kössl, J. Lepault, F. A. Rey, and F. X. Heinz, “Characterization of a structural intermediate of flavivirus membrane fusion,” PLoS Pathogens, vol. 3, no. 2, p. e20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Perera and R. J. Kuhn, “Structural proteomics of dengue virus,” Current Opinion in Microbiology, vol. 11, no. 4, pp. 369–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bressanelli, K. Stiasny, S. L. Allison et al., “Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation,” EMBO Journal, vol. 23, no. 4, pp. 728–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kielian and F. A. Rey, “Virus membrane-fusion proteins: More than one way to make a hairpin,” Nature Reviews Microbiology, vol. 4, no. 1, pp. 67–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mukhopadhyay, R. J. Kuhn, and M. G. Rossmann, “A structural perspective of the Flavivirus life cycle,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 13–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Miller, S. Kastner, J. Krijnse-Locker, S. Bühler, and R. Bartenschlager, “The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner,” Journal of Biological Chemistry, vol. 282, no. 12, pp. 8873–8882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Miller and J. Krijnse-Locker, “Modification of intracellular membrane structures for virus replication,” Nature Reviews Microbiology, vol. 6, no. 5, pp. 363–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Welsch, S. Miller, I. Romero-Brey et al., “Composition and three-dimensional architecture of the dengue virus replication and assembly sites,” Cell Host and Microbe, vol. 5, no. 4, pp. 365–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. J. L. Wu, G. Grouard-Vogel, W. Sun et al., “Human skin Langerhans cells are targets of dengue virus infection,” Nature Medicine, vol. 6, no. 7, pp. 816–820, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Navarro-Sanchez, R. Altmeyer, A. Amara et al., “Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses,” EMBO Reports, vol. 4, no. 7, pp. 723–728, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Tassaneetrithep, T. H. Burgess, A. Granelli-Piperno et al., “DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells,” Journal of Experimental Medicine, vol. 197, no. 7, pp. 823–829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Y. Lozach, L. Burleigh, I. Staropoli et al., “Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals,” Journal of Biological Chemistry, vol. 280, no. 25, pp. 23698–23708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. F. Alen, S. J. F. Kaptein, T. De Burghgraeve, J. Balzarini, J. Neyts, and D. Schols, “Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection,” Virology, vol. 387, no. 1, pp. 67–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Pokidysheva, Y. Zhang, A. J. Battisti et al., “Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN,” Cell, vol. 124, no. 3, pp. 485–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Hacker, L. White, and A. M. de Silva, “N-linked glycans on dengue viruses grown in mammalian and insect cells,” Journal of General Virology, vol. 90, no. 9, pp. 2097–2106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. F. Alen, T. de Burghgraeve, S. J. F. Kaptein, J. Balzarini, J. Neyts, and D. Schols, “Broad Antiviral activity of Carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells,” PLoS ONE, vol. 6, no. 6, Article ID e21658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Miller, B. J. M. DeWet, L. Martinez-Pomares et al., “The mannose receptor mediates dengue virus infection of macrophages,” PLoS Pathogens, vol. 4, no. 2, p. e17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. T. Chen, Y. L. Lin, M. T. Huang et al., “CLEC5A is critical for dengue-virus-induced lethal disease,” Nature, vol. 453, no. 7195, pp. 672–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Triantafilou, M. Triantafilou, and R. L. Dedrick, “A CD14-independent LPS receptor cluster,” Nature Immunology, vol. 2, no. 4, pp. 338–345, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Chen, T. Maguire, R. E. Hileman et al., “Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate,” Nature Medicine, vol. 3, no. 8, pp. 866–871, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. C. Chen, S. Y. Wang, and C. C. King, “Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism,” Journal of Virology, vol. 73, no. 4, pp. 2650–2657, 1999. View at Scopus
  24. J. Reyes-Del Valle, S. Chávez-Salinas, F. Medina, and R. M. Del Angel, “Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells,” Journal of Virology, vol. 79, no. 8, pp. 4557–4567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Y. Wei, L. F. Jiang, D. Y. Fang, and H. Y. Guo, “Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides,” Journal of General Virology, vol. 84, no. 11, pp. 3095–3098, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Bosch, K. Xhaja, L. Estevez et al., “Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge,” Journal of Virology, vol. 76, no. 11, pp. 5588–5597, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Kiessling, C. Haller, and J. Kartenbeck, “Cell-cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics,” Cell and Tissue Research, vol. 297, no. 1, pp. 131–140, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. K. J. L. Liew and V. T. K. Chow, “Differential display RT-PCR analysis of ECV304 endothelial-like cells infected with dengue virus type 2 reveals messenger RNA expression profiles of multiple human genes involved in known and novel roles,” Journal of Medical Virology, vol. 72, no. 4, pp. 597–609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Dalrymple and E. R. Mackow, “Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors,” Journal of Virology, vol. 85, no. 18, pp. 9478–9485, 2011. View at Publisher · View at Google Scholar
  30. P. Hilgard and R. Stockert, “Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes,” Hepatology, vol. 32, no. 5, pp. 1069–1077, 2000. View at Scopus
  31. B. K. Thaisomboonsuk, E. T. Clayson, S. Pantuwatana, D. W. Vaughn, and T. P. Endy, “Characterization of dengue-2 virus binding to surfaces of mammalian and insect cells,” American Journal of Tropical Medicine and Hygiene, vol. 72, no. 4, pp. 375–383, 2005. View at Scopus
  32. J. De Jesús Martínez-Barragán and R. M. Del Angel, “Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection,” Journal of Virology, vol. 75, no. 17, pp. 7818–7827, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Germi, J. M. Crance, D. Garin et al., “Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus,” Virology, vol. 292, no. 1, pp. 162–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Thepparit, W. Phoolcharoen, L. Suksanpaisan, and D. R. Smith, “Internalization and propagation of the dengue virus in human hepatoma (HepG2) cells,” Intervirology, vol. 47, no. 2, pp. 78–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Bielefeldt-Ohmann, M. Meyer, D. R. Fitzpatrick, and J. S. Mackenzie, “Dengue virus binding to human leukocyte cell lines: Receptor usage differs between cell types and virus strains,” Virus Research, vol. 73, no. 1, pp. 81–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. L. Lin, H. Y. Lei, Y. S. Lin, T. M. Yeh, S. H. Chen, and H. S. Liu, “Heparin inhibits dengue-2 virus infection of five human liver cell lines,” Antiviral Research, vol. 56, no. 1, pp. 93–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J. J. Hung, M. T. Hsieh, M. J. Young, C. L. Kao, C. C. King, and W. Chang, “An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells,” Journal of Virology, vol. 78, no. 1, pp. 378–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. R. M. Marks, H. Lu, R. Sundaresan et al., “Probing the interaction of dengue virus envelope protein with heparin: Assessment of glycosaminoglycan-derived inhibitors,” Journal of Medicinal Chemistry, vol. 44, no. 13, pp. 2178–2187, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Pattnaik, J. P. Babu, S. K. Verma, V. Tak, and P. V. L. Rao, “Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate,” Journal of Chromatography B, vol. 846, no. 1-2, pp. 184–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Götte, “Syndecans in inflammation,” The FASEB Journal, vol. 17, no. 6, pp. 575–591, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Mertens, J. J. Cassiman, H. Van den Berghe, J. Vermylen, and G. David, “Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties,” Journal of Biological Chemistry, vol. 267, no. 28, pp. 20435–20443, 1992. View at Scopus
  42. J. L. Zhang, J. L. Wang, N. Gao, Z. T. Chen, Y. P. Tian, and J. An, “Up-regulated expression of β3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 356, no. 3, pp. 763–768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Couvelard, P. Marianneau, C. Bedel et al., “Report of a fatal case of dengue infection with hepatitis: Demonstration of dengue antigens in hepatocytes and liver apoptosis,” Human Pathology, vol. 30, no. 9, pp. 1106–1110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Rosen, M. T. Drouet, and V. Deubel, “Detection of dengue virus RNA by reverse transcription-polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection,” American Journal of Tropical Medicine and Hygiene, vol. 61, no. 5, pp. 720–724, 1999. View at Scopus
  45. M. R. Huerre, N. Trong Lan, P. Marianneau et al., “Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children,” Virchows Archiv, vol. 438, no. 2, pp. 107–115, 2001. View at Scopus
  46. C. Thepparit and D. R. Smith, “Serotype-specific entry of dengue virus into liver cells: Identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor,” Journal of Virology, vol. 78, no. 22, pp. 12647–12656, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Hundt, J. M. Peyrin, S. Haïk et al., “Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor,” EMBO Journal, vol. 20, no. 21, pp. 5876–5886, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Jindadamrongwech, C. Thepparit, and D. R. Smith, “Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2,” Archives of Virology, vol. 149, no. 5, pp. 915–927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Cabrera-Hernandez, C. Thepparit, L. Suksanpaisan, and D. R. Smith, “Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70,” Journal of Medical Virology, vol. 79, no. 4, pp. 386–392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. E. J. Soilleux, R. Barten, and J. Trowsdale, “Cutting edge: DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13,” Journal of Immunology, vol. 165, no. 6, pp. 2937–2942, 2000. View at Scopus
  51. A. Engering, S. J. Van Vliet, K. Hebeda et al., “Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes,” American Journal of Pathology, vol. 164, no. 5, pp. 1587–1595, 2004. View at Scopus
  52. A. A. Bashirova, T. B. H. Geijtenbeek, G. C. F. Van Duijnhoven et al., “A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection,” Journal of Experimental Medicine, vol. 193, no. 6, pp. 671–678, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Cabrera-Hernandez and D. R. Smith, “Mammalian dengue virus receptors,” Dengue Bulletin, vol. 29, no. 662, pp. 119–135, 2005. View at Scopus
  54. S. B. Halstead, “Dengue,” The Lancet, vol. 370, no. 9599, pp. 1644–1652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. B. Halstead and E. J. O'Rourke, “Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody,” Journal of Experimental Medicine, vol. 146, no. 1, pp. 201–217, 1977. View at Scopus
  56. J. S. Salas-Benito and R. M. Del Angel, “Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus,” Journal of Virology, vol. 71, no. 10, pp. 7246–7252, 1997. View at Scopus
  57. M. Y. Mendoza, J. S. Salas-Benito, H. Lanz-Mendoza, S. Hernández-Martinez, and R. M. Del Angel, “A putative receptor for dengue virus in mosquito tissues: localization of a 45-KDA glycoprotein,” American Journal of Tropical Medicine and Hygiene, vol. 67, no. 1, pp. 76–84, 2002. View at Scopus
  58. M. De Lourdes Muñoz, A. Cisneros, J. Cruz, P. Das, R. Tovar, and A. Ortega, “Putative dengue virus receptors from mosquito cells,” FEMS Microbiology Letters, vol. 168, no. 2, pp. 251–258, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. R. F. Mercado-Curiel, H. A. Esquinca-Avilés, R. Tovar, Á. Díaz-Badillo, M. Camacho-Nuez, and M. D. L. Muñoz, “The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells,” BMC Microbiology, vol. 6, article 85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. D. R. Smith, “An update on mosquito cell expressed dengue virus receptor proteins,” Insect Molecular Biology, vol. 21, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar
  61. P. Sakoonwatanyoo, V. Boonsanay, and D. R. Smith, “Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein,” Intervirology, vol. 49, no. 3, pp. 161–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Kuadkitkan, N. Wikan, C. Fongsaran, and D. R. Smith, “Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells,” Virology, vol. 406, no. 1, pp. 149–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. M. S. Paingankar, M. D. Gokhale, and D. N. Deobagkar, “Dengue-2-virus-interacting polypeptides involved in mosquito cell infection,” Archives of Virology, vol. 155, no. 9, pp. 1453–1461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Stiasny, C. Koessl, and F. X. Heinz, “Involvement of lipids in different steps of the flavivirus fusion mechanism,” Journal of Virology, vol. 77, no. 14, pp. 7856–7862, 2003. View at Publisher · View at Google Scholar · View at Scopus