`The Scientific World JournalVolume 2014 (2014), Article ID 932743, 10 pageshttp://dx.doi.org/10.1155/2014/932743`
Research Article

## A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

1Mechanical Engineering Department, Yasouj University, P.O. Box 75914-353, Yasouj, Iran
2Mechanical Engineering Faculty, Shahrood University of Technology, Shahrood, Iran

Received 4 August 2013; Accepted 24 September 2013; Published 17 February 2014

Academic Editors: L. Nobile and X. Wu

#### Abstract

Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

#### 1. Introduction

In this paper, elastic analysis has been presented for rotating thick cylindrical shells under internal pressure with variable thickness using disk form multilayers.

#### 2. Formulation of Problem

In the first-order shear deformation theory, the sections that are straight and perpendicular to the mid-plane remain straight but not necessarily perpendicular after deformation and loading. In this case, shear strain and shear stress are taken into consideration.

Geometry of a thick cylindrical shell with variable thickness , and the length , is shown in Figure 1.

Figure 1: Thick cylindrical shell with variable thickness.

The location of a typical point , within the shell element is as where is the distance of typical point from the middle surface. In (1), and variable thickness are where is tapering angle as

The general axisymmetric displacement field , in the first-order Mirsky-Hermann’s theory [2], could be expressed on the basis of axial displacement and radial displacement as follows: where and are the displacement components of the middle surface. Also, and are the functions used to determine the displacement field.

The kinematic equations (strain-displacement relations) in the cylindrical coordinates system are

The stress-strain relations (constitutive equations) for homogeneous and isotropic materials are as follows: where and , , , and , are the stresses and strains in the axial , circumferential , and radial directions. and are Poisson’s ratio and modulus of elasticity, respectively. In (6), is

The normal forces , bending moments , shear force ), and the torsional moment in terms of stress resultants are where is the shear correction factor that is embedded in the shear stress term. In the static state, for cylindrical shells, [16].

On the basis of the principle of virtual work, the variations of strain energy are equal to the variations of work of external forces as follows: where is the total strain energy of the elastic body and is the total work of external forces due to internal pressure and centrifugal force.

With substituting strain energy and work of external forces, we have [8] where is the density and is the constant angular velocity. is the force per unit volume due to centrifugal force. Substituting (5) and (6) into (10), and drawing upon calculus of variation and the virtual work principle, we will have And the boundary conditions are

Equation (12) states the boundary conditions which must exist at the two ends of the cylinder.

In order to solve the set of differential equations (11), with use of (5) to (8) and then using (11), we have

The coefficients matrices and force vector are as follows: where the parameters are as follows:

The set of differential equations (13) is solved by perturbation technique in [8]. In the next section, a new method is presented for solving set of (11).

#### 3. Solution with Disk Form Multilayers

In this method, the thick cylinder with variable thickness is divided into disk layers with constant height (Figure 2).

Figure 2: Dividing of thick cylinder with variable thickness to disk form multilayers.

Therefore, the governing equations convert to nonhomogeneous set of differential equations with constant coefficients. and are length and radius of middle of disks. is number of disks. The modulus of elasticity and Poisson’s ratio of disks are assumed be constant.

The length of middle of an arbitrary disk (Figure 3) is as follows: where is the number of disks and is the corresponding number given to each disk.

Figure 3: Geometry of an arbitrary disk layer.

The radius of middle point of each disk is as follows: Thus, Considering shear stress and based on FSDT, nonhomogeneous set of ordinary differential equations with constant coefficient of each disk is obtained:

The coefficients matrices and force vector are as follows: where the parameters are as follows:

Defining the differential operator , (19) is written as Thus

The above differential equation has the total solution including general solution for homogeneous case and particular solution as follows:

For the general solution for homogeneous case, is substituted in .

We have Thus The result of the determinant above is a six-order polynomial which is a function of , the solution of which is 6 eigenvalues . The eigenvalues are 3 pairs of conjugated root. Substituting the calculated eigenvalues in the following equation, the corresponding eigenvectors are obtained as follows: Therefore, the homogeneous solution for (23) is The particular solution is obtained as follows: Therefore, the total solution for (23) is

In general, the problem for each disk consists of 8 unknown values of , including (first equation (11)), to (30), and (Equation .

#### 4. Boundary and Continuity Conditions

In this problem, the boundary conditions of cylinder are clamped-clamped ends; then we have Therefore, Because of continuity and homogeneity of the cylinder, at the boundary between two layers, forces, stresses and displacements must be continuous. Given that shear deformation theory applied is an approximation of one order and also all equations related to the stresses include the first derivatives of displacement, the continuity conditions are as follows: Given the continuity conditions, in terms of , 8 equations are obtained. In general, if the cylinder is divided into disk layers, equations are obtained. Using the 8 equations of boundary condition, equations are obtained. The solution of these equations yields unknown constants.

#### 5. Results and Discussion

A cylindrical shell with  mm,  mm, mm, and  mm will be considered in this paper. For analytical and numerical results the properties used are  GPa and . The applied internal pressure is 80 MPa. The thick cylindrical shell with variable thickness has clamped-clamped boundary conditions.

The effect of the number of disk layers on the radial displacement is shown in Figure 4. It is observed that if the number of disk layers is less than 50, it will have a significant effect on the response. However, if the number of layers is more than 60 disks, there will be no significant effect on radial displacement. In the problem in question 75 disks are used.

Figure 4: Effect of the number of disk layers on the radial displacement.

In Figures 5, 6, 7, and 8, displacement and stress distributions are obtained using multilayer method (ML), are compared with the solutions of FEM, and are presented in the form of graphs. Figures 5 to 8 show that the disk layer method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial stress, circumferential stress, and shear stress.

Figure 5: Radial displacement distribution in middle layer.
Figure 6: Radial stress distribution in middle layer.
Figure 7: Circumferential stress distribution in middle layer.
Figure 8: Radial displacement distribution in different layers.

The distribution of radial displacement at different layers is plotted in Figure 8. The radial displacement at points away from the boundaries depends on radius and length. According to Figure 8 the change in radial displacements in the lower boundary is greater than that of the upper boundary and the greatest radial displacement occurs in the internal surface .

Distribution of circumferential stress in different layers is shown in Figure 9. The circumferential stress at all points depends on radius and length. The circumferential stress at layers close to the external surface is negative and at other layers positive. The greatest circumferential stress occurs in the internal surface.

Figure 9: Circumferential stress distribution in different layers.

Figure 10 shows the distribution of shear stress at different layers. The shear stress at points away from the boundaries at different layers is the same and trivial. However, at points near the boundaries, the stress is significant, especially in the internal surface, which is the greatest.

Figure 10: Shear stress distribution in different layers.

The effects of angular velocity on the distribution of the stresses and radial displacement are presented in Figures 1113.

Figure 11: Radial displacement distribution in middle layers.
Figure 12: Circumferential stress distribution in middle layers.
Figure 13: Shear stress distribution in middle layers.

Figures 11 and 12 indicate radial displacement and circumferential stress rise with increasing angular velocity. Also for the angular speed less than 500 rad/s, the centrifugal force is less effective than the internal pressure.

According to Figure 13, the shear stress is independent of the centrifugal force. Also, it is noted that the shear stress at points away from the boundaries is zero.

#### 6. Conclusions

In the present study, we have the following.(1)Based on FSDT and elasticity theory, the governing equations of thick-walled disks are derived.(2)A thick cylindrical shell with variable thickness is divided into disks with constant height.(3)With considering continuity between layers and applying boundary conditions, the governing set of differential equations with constant coefficients is solved.(4)The results obtained for stresses and displacements are compared with the solutions carried out through the FEM. Good agreement was found among the results.

Adventures of the semi-analytical using disk form multilayers are as follows.(i)First shear deformation theory and perturbation theory result in the analytical solution of the problem with higher accuracy and within a shorter period of time.(ii)The solutions are complicated and time consuming.(iii)The shells with different geometries, and different loadings, and different boundary conditions, with even variable pressure, could be more easily solved.(iv)The method is very suitable for the purpose of calculation of radial stress, circumferential stress, shear stress, and radial displacement.Finally, in spite of the existing analytical methods, due to their complex mathematical relations governing them, could not easily solve them. Therefore, the multilayer disk form method could be a good replacement for the analysis of thick-walled shells.

#### Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

#### References

1. P. M. Naghdi and R. M. Cooper, “Propagation of elastic waves in cylindrical shells including the effects of transverse shear and rotary inertia,” Journal of the Acoustical Society of America, vol. 28, no. 1, pp. 56–63, 1956.
2. I. Mirsky and G. Hermann, “Axially motions of thick cylindrical shells,” Journal of Applied Mechanics, vol. 25, pp. 97–102, 1958.
3. J. E. Greenspon, “Vibration of a thick-walled cylindrical shell, camparison of the exact theory with approximate theories,” Journal of the Acoustical Society of America, vol. 32, no. 5, pp. 571–578, 1960.
4. M. Ziv and M. Perl, “Impulsive deformation of mirsky-herrmann's thick cylindrical shells by a numerical method,” Journal of Applied Mechanics, vol. 40, no. 4, pp. 1009–1016, 1973.
5. K. Suzuki, M. Konno, and S. Takahashi, “Axisymmetric vibrations of a cylindrical shell with varying thickness,” Bulletin of the JSME, vol. 24, no. 198, pp. 2122–2132, 1981.
6. T. E. Simkins, “Amplification of flexural waves in gun tubes,” Journal of Sound and Vibration, vol. 172, no. 2, pp. 145–154, 1994.
7. J.-H. Kang and A. W. Leissa, “Three-dimensional field equations of motion, and energy functionals for thick shells of revolution with arbitrary curvature and variable thickness,” Journal of Applied Mechanics, vol. 68, no. 6, pp. 953–954, 2001.
8. J.-H. Kang, “Field equations, equations of motion, and energy functionals for thick shells of revolution with arbitrary curvature and variable thickness from a three-dimensional theory,” Acta Mechanica, vol. 188, no. 1-2, pp. 21–37, 2007.
9. H. R. Eipakchi, G. H. Rahimi, and S. Esmaeilzadeh Khadem, “Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure,” Structural Engineering and Mechanics, vol. 16, no. 6, pp. 731–748, 2003.
10. M. Ghannad, M. Z. Nejad, and G. H. Rahimi, “Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory,” Mechanika, vol. 79, no. 5, pp. 13–20, 2009.
11. M. Z. Nejad, G. H. Rahimi, and M. Ghannad, “Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system,” Mechanika, vol. 77, no. 3, pp. 18–26, 2009.
12. M. Ghannad and M. Z. Nejad, “Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends,” Mechanika, vol. 85, no. 5, pp. 11–18, 2010.
13. M. Ghannad, G. H. Rahimi, and M. Z. Nejad, “Determination of displacements and stresses in pressurized thick cylindrical shells with variable thickness using perturbation technique,” Mechanika, vol. 18, no. 1, pp. 14–21, 2012.
14. M. Ghannad and M. Z. Nejad, “Elastic analysis of heterogeneous thick cylinders subjected to internal or external pressure using shear deformation theory,” Acta Polytechnica Hungarica, vol. 9, no. 6, pp. 117–136, 2012.
15. M. Ghannad, G. H. Rahimi, and M. Z. Nejad, “Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials,” Composites Part B: Engineering, vol. 45, no. 1, pp. 388–396, 2013.
16. S. Vlachoutsis, “Shear correction factors for plates and shells,” International Journal for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1537–1552, 1992.