Abstract

An efficient, unified algorithm, Advanced Two-Phase Cluster Partitioning, is proposed for automated synthesis of pseudo-exhaustive test generator for Built-In Self-Test (BIST) design. A prototype of the algorithm, Two-Phase Cluster Partitioning, has been proposed and the hierarchical design procedure is computationally efficient and produces test generation circuitry with low hardware overhead. However, in certain worst case, the algorithm may generate a sub-optimal design which requires more test patterns and/or hardware overhead. In order to generate a globally optimal design, further improvement of two-phase algorithm can be achieved by expanding the design space for the formation of linear sum so that the number of test signals required for pseudo-exhaustive testing can be reduced. We demonstrate the effectiveness of our approach by presenting detailed comparisons of our results against those that would be obtained by existing techniques.