About this Journal Submit a Manuscript Table of Contents
VLSI Design
Volume 8 (1998), Issue 1-4, Pages 489-493
http://dx.doi.org/10.1155/1998/39231

SPIN – A Schrödinger-Poisson Solver Including Nonparabolic Bands

Institute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, Vienna A-1040, Austria

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nonparabolicity effects in two-dimensional electron systems are quantitatively analyzed. A formalism has been developed which allows to incorporate a nonparabolic bulk dispersion relation into the Schrödinger equation. As a consequence of nonparabolicity the wave functions depend on the in-plane momentum. Each subband is parametrized by its energy, effective mass and a subband nonparabolicity coefficient. The formalism is implemented in a one-dimensional Schrödinger-Poisson solver which is applicable both to silicon inversion layers and heterostructures.