Abstract

A theoretical investigation of quantum-transport phenomena in mesoscopic systems is presented. In particular, a generalization to “open systems” of the well-known Semiconductor Bloch equations is proposed. Compared to the conventional Bloch theory, the presence of spatial boundary conditions manifest itself through self-energy corrections and additional source terms in the kinetic equations, which are solved by means of a generalized Monte Carlo simulation.The proposed numerical approach is applied to the study of the scattering-induced suppression of Bloch oscillations in semiconductor superlattices as well as to the analysis of quantum-transport phenomena in double-barrier structures.