Abstract

The Mutation Operator Monte Carlo method (MOMC) is a new type of Monte Carlo technique for the study of hot electron related effects in semiconductor devices. The MOMC calculates energy distributions of electrons by a physical mutation of the distribution towards a stationary condition. In this work we compare results of an one dimensional simulation of an 800nm Si-MOSFET with full band Monte Carlo calculations and measurement results. Starting from the potential distribution resulting from a drift diffusion simulation, the MOMC calculates electron distributions which are comparable to FBMC-results within minutes on a modern workstation. From these distributions, substrate and gate currents close to experimental results can be calculated. These results show that the MOMC is useful as a post-processor for the investigation of hot electron related problems in Si-MOSFETs. Beside the computational efficiency, a further advantage of the MOMC compared to standard MC techniques is the good resolution of the high energy tail of the distribution without the necessity of any statistical enhancement.