Abstract

Molecular Dynamics (MD) is a powerful tool for the atomistic understanding of longrange stress-mediated phenomena, phonon properties, and mechanical failure of nanostructures. For realistic modeling of nanostructures, however, the scope of simulations must be extended to large system sizes, long simulated times, and complex realism. We have developed new multilevel algorithms and physical models encompassing multiple levels of abstraction: i) space-time multiresolution schemes; ii) adaptive curvilinear-coordinate load balancing; iii) hierarchical dynamics via a rigid-body/ implicit-integration/normal-mode approach; iv) variable-charge MD based on electronegativity equalization; and v) multilevel preconditioned conjugate gradient method. Fuzzy clustering is used to facilitate the seamless integration of the multiple levels of abstraction.