Abstract

We have developed a full-band pseudopotential-based approach to describe semiconductor nanostructures. The method relies on the bulk Bloch functions expansion of the system wavefunction, which guarantee an efficient integration of the full-band approach in self-consistent schemes where Schroedinger and Poisson equations are solved iteratively. In order to gain efficiency of the method a suitable separation between structure dependent and material dependent contributions to the system hamiltonian is presented. Results are shown for a typical Si/SiO2 MOS structure.