About this Journal Submit a Manuscript Table of Contents
VLSI Design
Volume 2011 (2011), Article ID 407507, 12 pages
http://dx.doi.org/10.1155/2011/407507
Research Article

CONTANGO: Integrated Optimization of SoC Clock Networks

EECS Department, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109-2121, USA

Received 26 November 2010; Accepted 20 January 2011

Academic Editor: Rached Tourki

Copyright © 2011 Dong-Jin Lee and Igor L. Markov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Chao, Hsu, Ho, Kenneth D. Boese, and Andrew B. Kahng, “Zero skew clock routing with minimum wirelength,” in Proceedings of the International Conference on Coffee Science (ASIC '92), vol. 39, no. 11, pp. 17–21, November 1992.
  2. D. J. H. Huang, A. B. Kahng, and C. W. A. Tsao, “On the bounded-skew clock and Steiner routing problems,” in Proceedings of the 32nd Design Automation Conference (DAC '95), pp. 508–513, June 1995.
  3. J. Cong, A. B. Kahng, C. K. Koh, and C. W. Albert Tsao, “Bounded-skew clock and steiner routing,” ACM Transactions on Design Automation of Electronic Systems, vol. 3, no. 3, pp. 341–388, 1998.
  4. R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proceedings of the IEEE, vol. 89, no. 4, pp. 490–504, 2001.
  5. P.-H. Ho, “Industrial clock design,” in Proceedings of the International Symposium on Physical Design (ISPD '09), pp. 139–140, December 2009.
  6. R. S. Shelar, “An algorithm for routing with capacitance/distance constraints for clock distribution in microprocessors,” in Proceedings of the International Symposium on Physical Design (ISPD '09), pp. 141–148, April 2009. View at Publisher · View at Google Scholar
  7. A. B. Kahng, et al., “Interconnect tuning strategies for high-performance ICs,” in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE '98), pp. 471–478, 1998.
  8. F. Huebbers, A. Dasdan, and Y. Ismail, “Multi-layer interconnect performance corners for variation-aware timing analysis,” in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD '07), pp. 713–718, November 2007. View at Publisher · View at Google Scholar
  9. V. Khandelwal and A. Srivastava, “Variability-driven formulation for simultaneous gate sizing and postsilicon tunability allocation,” IEEE Transactions on Computer-Aided Design, vol. 27, no. 4, pp. 610–620, 2008. View at Publisher · View at Google Scholar
  10. S. Hu, Q. Li, J. Hu, and P. Li, “Utilizing redundancy for timing critical interconnect,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 10, pp. 1067–1080, 2007. View at Publisher · View at Google Scholar
  11. W. C. D. Lam, J. Jain, C. K. Koh, V. Balakrishnan, and Y. Chen, “Statistical based link insertion for robust clock network design,” in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD '05), pp. 588–591, November 2005. View at Publisher · View at Google Scholar
  12. J. Hu, A. B. Kahng, B. Liu, G. Venkataraman, and X. Xu, “A global minimum clock distribution network augmentation algorithm for guaranteed clock skew yield,” in Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC '07), pp. 25–31, 2007. View at Publisher · View at Google Scholar
  13. J. Long, H. Zhou, and S. O. Memik, “An O(nlogn) edge-based algorithm for obstacle-avoiding rectilinear Steiner tree construction,” in Proceedings of the ACM International Symposium on Physical Design (ISPD '08), pp. 126–133, April 2008. View at Publisher · View at Google Scholar
  14. M. Edahiro, “Clustering-based optimization algorithm in zero-skew routings,” in Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 612–616, June 1993.
  15. T.-H. Chao, Y.-C. Hsu, and J.-M. Ho, “Zero skew clock net routing,” in Proceedings of the Design Automation Conference (DAC '92), pp. 518–523, 1992.
  16. R. S. Tsay, “Exact zero-skew clock routing algorithm,” IEEE Transactions on Computer-Aided Design, vol. 12, no. 2, pp. 242–249, 1993. View at Publisher · View at Google Scholar
  17. T. H. Chao, YU. C. Hsu, J. M. Ho, K. D. Boese, and A. B. Kahng, “Zero skew clock routing with minimum wirelength,” IEEE Transactions on Circuits and Systems II, vol. 39, no. 11, pp. 799–814, 1992. View at Publisher · View at Google Scholar
  18. A. B. Kahng and C. W. A. Tsao, “Practical bounded-skew clock routing,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 16, no. 2-3, pp. 199–215, 1997.
  19. L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree networks for minimal Elmore delay,” in Proceedings of the International Symposium on Computer Architecture (ISCA '90), pp. 865–868, May 1990.
  20. W. Shi and Z. Li, “A fast algorithm for optimal buffer insertion,” IEEE Transactions on Computer-Aided Design, vol. 24, no. 6, pp. 879–891, 2005. View at Publisher · View at Google Scholar
  21. C. J. Alpert, A. B. Kahng, B. Liu, I. I. Mǎndoiu, and A. Z. Zelikovsky, “Minimum buffered routing with bounded capacitive load for slew rate and reliability control,” IEEE Transactions on Computer-Aided Design, vol. 22, no. 3, pp. 241–253, 2003. View at Publisher · View at Google Scholar
  22. C. Albrecht, A. B. Kahng, B. Liu, I. I. Mǎndoiu, and A. Z. Zelikovsky, “On the skew-bounded minimum-buffer routing tree problem,” IEEE Transactions on Computer-Aided Design, vol. 22, no. 7, pp. 937–945, 2003. View at Publisher · View at Google Scholar
  23. S. Hu, C. J. Alpert, J. Hu et al., “Fast algorithms for slew-constrained minimum cost buffering,” IEEE Transactions on Computer-Aided Design, vol. 26, no. 11, pp. 2009–2022, 2007. View at Publisher · View at Google Scholar
  24. C. N. Sze, P. Restle, GI. J. Nam, and C. Alpert, “ISPD2009 clock network synthesis contest,” in Proceedings of the International Symposium on Physical Design (ISPD '09), pp. 149–150, April 2009. View at Publisher · View at Google Scholar
  25. C. L. Lung, ZI. Y. Zeng, C. H. Chou, and S. C. Chang, “Clock skew optimization considering complicated power modes,” in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE '10), pp. 1474–1479, March 2010.
  26. X. W. Shih, C. C. Cheng, Y. K. Ho, and Y. W. Chang, “Blockage-avoiding buffered clock-tree synthesis for clock latency-range and skew minimization,” in Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC '10), pp. 395–400, January 2010. View at Publisher · View at Google Scholar
  27. W. H. Liu, Y. L. Li, and H. C. Chen, “Minimizing clock latency range in robust clock tree synthesis,” in Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC '10), pp. 389–394, January 2010. View at Publisher · View at Google Scholar
  28. J. Lu, W. K. Chow, C. W. Sham, and E. F. Y. Young, “A dual-MST approach for clock network synthesis,” in Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC '10), pp. 467–473, January 2010. View at Publisher · View at Google Scholar
  29. X.-W. Shih and Y.-W. Chang, “Fast timing-model independent buffered clock-tree synthesis,” in Proceedings of the Design Automation Conference (DAC '10), pp. 80–85, 2010. View at Publisher · View at Google Scholar
  30. D. Lee and I. L. Markov, “Contango: integrated optimization of SoC clock networks,” in Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE '10), pp. 1468–1473, March 2010.
  31. P. Nenzi, “NG-SPICE: the free circuit simulator,” 2010, http://ngspice.sourceforge.net.
  32. HSPICE, Simulation and Analysis User Guide, Synopsys, Mountain View, Calif, USA, 2003.