About this Journal Submit a Manuscript Table of Contents
VLSI Design
Volume 2011 (2011), Article ID 548546, 9 pages
http://dx.doi.org/10.1155/2011/548546
Research Article

Vertical Gate RF SOI LIGBT for SPICs with Significantly Improved Latch-Up Immunity

1Key Laboratory of RF Circuit and System of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China
2College of Electronic Science and Technology, Faculty of Electronic Information and Electric Engineering, Dalian University of Technology, Dalian 116024, China
3Hangzhou Hanan Semiconductor Co., Ltd., Hangzhou 310018, China

Received 26 March 2011; Revised 26 May 2011; Accepted 31 May 2011

Academic Editor: Ethan Farquhar

Copyright © 2011 Haipeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. J. Baliga, M. S. Adler, P. V. Gray, and R. P. Love, “The insulated gate rectifier (IGR): a new power switching device,” in Proceedings of the International Electron Devices Meeting. Technical Digest (IEDM Tech. Digest '82), pp. 264–267, 1982. View at Scopus
  2. J. P. Russell, A. M. Goodman, L. A. Goodman, and J. M. Neilson, “The COMFET—new high conductance MOS-gated device,” IEEE Electron Device Letters, vol. 4, no. 3, pp. 63–65, 1983. View at Scopus
  3. J. Baliga, M. S. Adler, R. P. Love, P. V. Gray, and N. D. Zommer, “The insulated gate transistor: a new three-terminal MOS-controlled bipolar power device,” IEEE Transactions on Electron Devices, vol. 31, no. 6, pp. 821–828, 1984. View at Scopus
  4. M. Darwish and K. Board, “Lateral resurfed COMFET,” Electronics Letters, vol. 20, no. 12, pp. 519–520, 1984. View at Scopus
  5. M. R. Simpson, P. A. Gough, F. I. Hshieh, and V. Rumennik, “Analysis of the insulated gate transistor,” in Proceedings of the International Electron Devices Meeting. Technical Digest (IEDM Tech. Digest '85), pp. 740–743, 1985. View at Scopus
  6. A. L. Robinson, T. P. Chow, M. S. Adler, B. J. Baliga, and E. J. Wildi, “N-channel lateral insulated gate transistors: part I—steady state characteristics,” IEEE Transactions on Electron Devices, vol. 33, no. 12, pp. 1956–1963, 1986. View at Scopus
  7. T. P. Chow, B. J. Baliga, D. N. Pattanayak, and M. S. Adler, “Effect of substrate doping on the performance of anode-shorted n-channel lateral insulated-gate bipolar transistors,” IEEE Electron Device Letters, vol. 9, no. 9, pp. 450–452, 1988. View at Scopus
  8. T. P. Chow, D. N. Pattanayak, B. J. Baliga, M. S. Adler, W. A. Hennessy, and C. E. Logan, “Interaction between monolithic, junction-isolated lateral insulated-gate bipolar transistors,” IEEE Transactions on Electron Devices, vol. 38, no. 2, pp. 310–314, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Wacyk, R. Jayaraman, L. Casey, and J. Sin, “Fast LIGBT switching due to plasma confinement through pulse width control,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 97–102, 1991.
  10. Y. S. Huang, B. J. Baliga, S. Tandon, and A. Reisman, “Comparison of DI and JI lateral IGBTs,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 40–43, 1992.
  11. D. R. Disney and J. D. Plummer, “SOI LIGBT devices with a dual P-well implant for improved latching characteristics,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 254–258, 1993.
  12. I. Omura, N. Yasuhara, A. Nakagawa, and Y. Suzuki, “Numerical analysis of SOI IGBT switching characteristics—switching speed enhancement by reducing the SOI thickness,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 248–253, 1993.
  13. H. Neubrand, J. Serafin, M. Fullmann, and J. Korec, “Comparison of lateral EST and IGBT devices on SOI substrate,” in Proceedings of the International Symposium on Power Semiconductor Devices and ICs, pp. 264–268, 1993.
  14. H. Sumida, A. Hirabayashi, and N. Kumagai, “The modified structure of the lateral IGBT on the SOI wafer for improving the dynamic latch-up characteristics,” IEEE Transactions on Electron Devices, vol. 42, no. 2, pp. 367–370, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Y. Park, S. H. Kim, and Y. I. Choi, “Buried gate SOI LIGBT without latch-up susceptibility,” in Proceedings of the IEEE International SOI Conference, pp. 57–58, October 1998. View at Scopus
  16. Y. C. Liang, S. Xu, C. Ren, and J. Luo, “New SOI structure for LIGBT with improved thermal and latch-up characteristics,” in Proceedings of the 3rd IEEE International Conference on Power Electronics and Drive Systems (PEDS '99), pp. 258–261, July 1999. View at Scopus
  17. W. B. Choi, W. J. Sung, Y. I. Lee, and M. Y. Sung, “Dual-channel SOI LIGBT with improved latch-up and forward voltage drop characteristics,” in Proceedings of the 59th Annual Device Research Conference (DRC '01), pp. 53–54, June 2001. View at Scopus
  18. E. G. Kang and M. Y. Sung, “A small sized lateral trench electrode IGBT for improving latch-up and breakdown characteristics,” Solid-State Electronics, vol. 46, no. 2, pp. 295–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. H. P. Zhang, L. L. Sun, L. F. Jiang, L. J. Ma, and M. Lin, “Process simulation of trench gate and plate and trench drain SOI NLIGBT with TCAD Tools,” in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS '08), pp. 1037–1040, December 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Zhang, B. Su, L. Sun, and D. Wang, “Vertical gate RF SOI LIGBT without latch-up susceptibility,” in Proceedings of the International Semiconductor Device Research Symposium (ISDRS '09), pp. 1–2, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. P. Zhang, L. F. Jiang, L. L. Sun, et al., “A novel SOI LDMOS with a trench gate and field plate and trench drain for RF applications,” in Proceedings of the 7th International Symposium on Communications and Information Technologies (ISCIT '07), pp. 34–39, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. P. Zhang, L. L. Sun, L. F. Jiang, L. Y. Xu, and M. Lin, “Process simulation of trench gate and plate and trench drain SOI nLDMOS with TCAD tools,” in Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE '08), pp. 92–95, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. P. Zhang, Study on silicon based MOSFET and CMOS circuits for high temperature applications, Doctoral thesis, Microelectronics Center, Southeast University, Nanjing, China, 2001, chapter 2.
  24. S. Merchant, E. Arnold, H. Baumgart, et al., “Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors,” in Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs, pp. 124–128, 1993.
  25. S. Zhang, J. K. O. Sin, T. M. L. Lai, and P. K. Ko, “Numerical modeling of linear doping profiles for high-voltage thin-film SOI devices,” IEEE Transactions on Electron Devices, vol. 46, no. 5, pp. 1036–1041, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Tadikonda, S. Hardikar, and E. M. S. Narayanan, “Realizing high breakdown voltages (>600 V) in partial SOI technology,” Solid-State Electronics, vol. 48, no. 9, pp. 1655–1660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. G. Xu, H. P. Zhang, D. J. Wang et al., “Forward block characteristic of a novel SOI LDMOS with a buried P-type layer,” in Proceedings of the IEEE International Silicon on Insulator Conference (SOI '10), pp. 88–89, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. P. Zhang, R. S. Qi, W. L. Zhao, et al., “Forward block characteristic of a novel anti-ESD RF SOI LIGBT with a buried P-type layer,” in Proceedings of the IEEE China-Japan Microwave Conference, 2011.
  29. H. P. Zhang, L. Zhang, D. J. Wang, et al., “Positive ESD robustness of a novel anti-ESD TGFPTD SOI LDMOS,” in Proceedings of the IEEE International Conference on Computer applications and Industry Electronics, pp. 5022–5025, 2010.
  30. H. P. Zhang, L. Zhang, D. J. Wang, et al., “Negative ESD robustness of a novel anti-ESD TGFPTD SOI LDMOS,” in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, pp. 1227–1230, 2010.