About this Journal Submit a Manuscript Table of Contents
VLSI Design
Volume 2012 (2012), Article ID 602737, 17 pages
http://dx.doi.org/10.1155/2012/602737
Research Article

Hardware Design Considerations for Edge-Accelerated Stereo Correspondence Algorithms

Department of Electrical and Computer Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Received 25 February 2012; Accepted 23 March 2012

Academic Editor: Muhammad Shafique

Copyright © 2012 Christos Ttofis and Theocharis Theocharides. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Cyganek and J. P. Siebert, Introduction to 3D Computer Vision Techniques and Algorithms, Wiley, John & Sons, 2009.
  2. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 7–42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K.-J. Yoon and I.-S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 650–656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Tombari, S. Mattoccia, and L. Di Stefano, “Segmentation-based adaptive support for accurate stereo correspondence,” in Proceedings of the 2nd Pacific Rim Conference on Advances in Image and Video Technology, vol. 4872 of Lecture Notes in Computer Science, pp. 427–438, Springer, December 2007.
  6. M. Gerrits and P. Bekaert, “Local stereo matching with segmentation-based outlier rejection,” in Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV '06), p. 66, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Ttofis, S. Hadjitheophanous, A. S. Georghiades, and T. Theocharides, “Edge-directed hardware architecture for real-time disparity map computation,” in Proceedings of the IEEE Transactions on Computers, 2012.
  8. K. Mühlmann, D. Maier, J. Hesser, and R. Männer, “Calculating dense disparity maps from color stereo images, an efficient implementation,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 79–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Forstmann, Y. Kanou, J. Ohya, S. Thuering, and A. Schmitt, “Real-time stereo by using dynamic programming,” in Proceedings of the Computer Vision and Pattern Recognition Workshop (CVPRW '04), p. 29, June 2004.
  10. L. D. Stefano, M. Marchionni, and S. Mattoccia, “A fast area-based stereo matching algorithm,” Image and Vision Computing, vol. 22, no. 12, pp. 983–1005, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-time correlation-based stereo vision with reduced border errors,” International Journal of Computer Vision, vol. 47, no. 1–3, pp. 229–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Yang and M. Pollefeys, “A versatile stereo implementation on commodity graphics hardware,” Real-Time Imaging, vol. 11, no. 1, pp. 7–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-time global stereo matching using hierarchical belief propagation,” in Proceedings of the The British Machine Vision Conference, 2006.
  14. R.-P. M. Berretty, A. K. Riemens, and P. F. Machado, “Real-time embedded system for stereo video processing for multiview displays,” in Proceedings of the Stereoscopic Displays and Virtual Reality Systems XIV, Proceeding of SPIE, San Jose, Calif, USA, January 2007. View at Publisher · View at Google Scholar
  15. B. Khaleghi, S. Ahuja, and Q. M. J. Wu, “An improved real-time miniaturized embedded stereo vision system (MESVS-II),” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops, pp. 1–8, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Zinner and M. Humenberger, “Distributed real-time stereo matching on smart cameras,” in Proceedings of the 4th ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC '10), pp. 182–189, New York, NY, USA, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Cavanag and M. Manzke, “Real time disparity map estimation on the cell processor,” in Proceedings of the Eurographics Ireland Workshop 2009, pp. 67–74, Trinity College Dublin, December 2009.
  18. J. Liu, Y. Xu, R. Klette, H. Chen, W. Rong, and T. Vaudrey, “Disparity map computation on a cell processor,” in Proceedings of the IASTED International Conference on Modelling, Simulation, and Identification (MSI '09), Beijing, China, October 2009. View at Scopus
  19. H. Hile and C. Zheng, “Stereo video processing for depth map,” Tech. Rep., University of Washington, 2004.
  20. Y. Miyajima and T. Maruyama, “A real-time stereo vision system with FPGA,” in Proceedings of the 13th International Conference on Field-Programmable Logic and Applications (FPL '03), pp. 448–457, Lisbon, Portugal, 2003.
  21. L. Nalpantidis, G. Sirakoulis, and A. Gasteratos, “Review of stereo matching algorithms for 3D vision,” in Proceedings of the 16th International Symposium on Measurement and Control in Robotics (ISMCR '07), pp. 116–124, Warsaw, Poland, June 2007.
  22. M. Arias-Estrada and J. M. Xicotencatl, “Multiple stereo matching using an extended architecture,” in Proceedings of the Field-Programable Logic and Applications, vol. 2778, pp. 203–212, Springer, 2003.
  23. S. H. Lee, J. Yi, and J. Kim, “Real-time stereo vision on a reconfigurable system,” in Proceedings of the Embedded Computer Systems: Architectures, Modelling and Simulation, vol. 3553, pp. 299–307, Springer, 2005.
  24. M. Hariyama, Y. Kobayashi, M. Kameyama, and N. Yokoyama, “FPGA implementation of a stereo matching processor based on window-parallel-and-pixel-parallel architecture,” in Proceedings of the IEEE International 48th Midwest Symposium on Circuits and Systems, (MWSCAS '05), vol. 2, pp. 1219–1222, Covington, Ky, USA, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Georgoulas and I. Andreadis, “A real-time occlusion aware hardware structure for disparity map computation,” in Proceedings of the Image Analysis and Process (ICIAP '09), vol. 5716, pp. 721–730, 2009.
  26. K. Ambrosch, M. Humenberger, W. Kubinger, and A. Steininger, “A SAD-based stereo matching using FPGAs,” in Proceedings of the Embedded Computer Vision part II, pp. 121–138, Spinger, 2009.
  27. J. Díaz, E. Ros, R. Carrillo, and A. Prieto, “Real-time system for high-image resolution disparity estimation,” IEEE Transactions on Image Processing, vol. 16, no. 1, pp. 280–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Darabiha, J. MacLean, and J. Rose, “Reconfigurable hardware implementation of a phase-correlation stereoalgorithm,” Machine Vision and Applications, vol. 17, no. 2, pp. 116–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Jin, J. Cho, X. D. Pham et al., “FPGA design and implementation of a real-time stereo vision system,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 1, pp. 15–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Y. C. Chang, T. H. Tsai, B. H. Hsu, Y. C. Chen, and T. S. Chang, “Algorithm and architecture of disparity estimation with mini-census adaptive support weight,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 6, pp. 792–805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1303–1316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Raman and H. Aggarwal, “Study and comparison of various image edge detection techniques,” The International Journal of Image Processing, vol. 3, no. 1, pp. 1–12, 2009.
  33. “A Framework for Evaluating Stereo-Based Pedestrian Detection Techniques,” http://www.cdvp.dcu.ie/datasets/pedestrian_detection/.
  34. Z. Vasicek and L. Sekanina, “An evolvable hardware system in Xilinx Virtex II Pro FPGA,” International Journal of Innovative Computing and Applications, vol. 1, no. 1, pp. 63–73, 2007.