About this Journal Submit a Manuscript Table of Contents
VLSI Design
Volume 2013 (2013), Article ID 643293, 7 pages
http://dx.doi.org/10.1155/2013/643293
Research Article

A High-Efficiency Monolithic DC-DC PFM Boost Converter with Parallel Power MOS Technique

1Department of Electrical Engineering, National Formosa University, No. 64, Wunhua Rd., Huwei Township, Yunlin 632, Taiwan
2Department of Electrical Engineering, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung 402, Taiwan
3Department of Electronic Engineering, National Chin-Yi University of Technology, No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 411, Taiwan

Received 26 December 2012; Accepted 12 April 2013

Academic Editor: Yeong-Kang Lai

Copyright © 2013 Hou-Ming Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Miribel-Catala, M. Puig-Vidal, J. S. I. Marti, P. Goyhenetche, and X. Q. Nguyen, “An integrated digital PFM DC-DC boost converter for a power management application: a RGB backlight LED system driver,” in Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society (IECON '02), vol. 1, pp. 37–42, November 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Duan, H. Deng, N. X. Sun, A. Q. Huang, and D. Y. Chen, “A high performance integrated boost DC-DC converter for portable power supply,” in Proceedings of the 19th Annual IEEE Applied Power Electronics Conference and Exposition (APEC '04), vol. 2, pp. 1039–1044, February 2004. View at Scopus
  3. V. Kursun, S. G. Narendra, V. K. De, and E. G. Friedman, “Low-voltage-swing monolithic dc-dc conversion,” IEEE Transactions on Circuits and Systems II, vol. 51, no. 5, pp. 241–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically integrated boost converter based on 0.5-μm CMOS process,” IEEE Transactions on Power Electronics, vol. 20, no. 3, pp. 628–638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Mulligan, B. Broach, and T. H. Lee, “A constant-frequency method for improving light-load efficiency in synchronous buck converters,” IEEE Power Electronics Letters, vol. 3, no. 1, pp. 24–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE Journal of Solid-State Circuits, vol. 40, no. 11, pp. 2265–2273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. C. Lee, K. T. Chang, K. H. Chen, and W. T. Chen, “Power saving of a dynamic width controller for a monolithic current-mode cmos dc-dc converter,” in Proceedings of the 9th International Database Engineering & Application Symposium, pp. 352–357, 2005.
  8. O. Trescases, T. N. Wai, H. Nishio, M. Edo, and T. Kawashima, “A digitally controlled DC-DC converter module with a segmented output stage for optimized efficiency,” in Proceedings of the 18th International Symposium on Power Semiconductor Devices and ICs (ISPSD '06), pp. 1–4, June 2006. View at Scopus
  9. A. F. Rafetseder and F. A. Himmelstoss, “Discontinuous operation of the Boost converter with reduced buffer voltage stress,” in Proceedings of the International Symposium On Signals, Circuits and Systems (ISSCS '07), vol. 2, pp. 1–4, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Sahu and G. A. Rincón-Mora, “An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 2, pp. 312–321, 2007. View at Publisher · View at Google Scholar · View at Scopus