About this Journal Submit a Manuscript Table of Contents
Veterinary Medicine International
Volume 2012 (2012), Article ID 274608, 7 pages
http://dx.doi.org/10.1155/2012/274608
Review Article

Canine Mammary Mixed Tumours: A Review

1Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
2Fepagro Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), 92990-000 Eldorado do Sul, RS, Brazil

Received 8 March 2012; Revised 16 August 2012; Accepted 25 September 2012

Academic Editor: Giuliano Bettini

Copyright © 2012 Geovanni Dantas Cassali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. D. Cassali, B. M. Melo, N. Madureira, et al., “Mammary gland diagnosis of the laboratory of comparative pathology—UFMG, from 2000 to 2008,” in Proceedings of the World Small Animal Veterinary Association, vol. 14, p. 173, São Paulo, Brazil, 2009, Clínica Veterinária-supplement.
  2. W. Misdorp, R. W. Else, and E. Hellmen, Histological Classification of Mammary Tumors of the Dog and the Cat, World Health Organization, Geneva, Switzerland, 1999.
  3. G. D. Cassali, G. E. Lavalle, A. B. De Nardi, et al., “Consensus for the diagnosis, prognosis and treatment of canine mammary tumors,” Brazilian Journal of Veterinary Pathology, vol. 4, no. 2, pp. 153–180, 2011.
  4. F. Grandi, M. M. Colodel, L. N. Monteiro, J. R. V. Leão, and N. S. Rocha, “Extramedullary hematopoiesis in a case of benign mixed mammary tumor in a female dog: cytological and histopathological assessment,” BMC Veterinary Research, vol. 6, article 45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. A. Auler, A. C. Bertagnolli, E. Ferreira, et al., “Myeloid metaplasia in canine mixed mammary tumors: occurrence and characterization,” Veterinary Quarterly, vol. 31, no. 4, pp. 173–177, 2011.
  6. F. Gärtner, M. Geraldes, G. Cassali, A. Rema, and F. Schmitt, “DNA measurement and immunohistochemical characterization of epithelial and mesenchymal cells in canine mixed mammary tumours: putative evidence for a common histogenesis,” The Veterinary Journal, vol. 158, no. 1, pp. 39–47, 1999. View at Scopus
  7. A. Gama, A. Alves, F. Gartner, and F. Schmitt, “p63: a novel myoepithelial cell marker in canine mammary tissues,” Veterinary Pathology, vol. 40, no. 4, pp. 412–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. De Los Monteros, M. Y. Millán, G. A. Ramírez, J. Ordás, C. Reymundo, and J. Martín De Las Mulas, “Expression of maspin in mammary gland tumors of the dog,” Veterinary Pathology, vol. 42, no. 3, pp. 250–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. N. Z. Ramalho, A. Ribeiro-Silva, G. D. Cassali, and S. Zucoloto, “The expression of p63 and cytokeratin 5 in mixed tumors of the canine mammary gland provides new insights into the histogenesis of these neoplasms,” Veterinary Pathology, vol. 43, no. 4, pp. 424–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. C. Bertagnolli, G. D. Cassali, M. C. L. S. Genelhu, F. A. Costa, J. F. C. Oliveira, and P. B. D. Gonçalves, “Immunohistochemical expression of p63 and δNp63 in mixed tumors of canine mammary glands and its relation with p53 expression,” Veterinary Pathology, vol. 46, no. 3, pp. 407–415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Hampe and W. Misdorp, “Tumours and dysplasias of the mammary gland,” Bulletin of the World Health Organization, vol. 50, no. 1-2, pp. 111–133, 1974. View at Scopus
  12. J. E. Moulton, “Tumors of the mammary gland,” in Tumors in Domestic Animals, pp. 518–552, University of California Press, Berkeley, Calif, USA, 3rd edition, 1990.
  13. S. A. Benjamin, A. C. Lee, and W. J. Saunders, “Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in Beagles,” Veterinary Pathology, vol. 36, no. 5, pp. 423–436, 1999. View at Scopus
  14. A. G. Jabara, “Canine mixed tumours,” The Australian Veterinary Journal, vol. 36, no. 5, pp. 212–221, 1960.
  15. G. Sittner, “Mammamischtumor bei einem männlichen Hund und seine Histogenese,” Archiv für Wissenschaftliche und Praktische Tierheilkunde, no. 74, pp. 406–410, 1939.
  16. E. Cotchin, “Some glandular tumours of the dog,” Proceedings of the Royal Society of Medicine, vol. 40, no. 11, pp. 636–638, 1947.
  17. K. Nieberle, “Zur Kenntnis der sog. Mammamischgeschwülste des Hundes,” Journal of Cancer Research And Clinical Oncology, vol. 39, no. 1, pp. 113–127, 1933. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Mulligan, Neoplasms of the Dog, Willians and Wilkins, Baltimore, Md, USA, 1949.
  19. H. G. Richards, P. E. McNeil, H. Thompson, and S. W. J. Reid, “An epidemiological analysis of a canine-biopsies database compiled by a diagnostic histopathology service,” Preventive Veterinary Medicine, vol. 51, no. 1-2, pp. 125–136, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. L. S. Genelhu, S. V. Cardoso, H. Gobbi, and G. D. Cassali, “A comparative study between mixed-type tumours from human salivary and canine mammary glands,” BMC Cancer, vol. 7, article 218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Priester, “Occurrence of mammary neoplasms in bitches in relation to breed, age, tumour type, and geographical region from which reported,” Journal of Small Animal Practice, vol. 20, no. 1, pp. 1–11, 1979. View at Scopus
  22. M. F. Cavalcanti, Fatores prognósticos na abordagem clínica e histopatológica dos carcinomas mamários de cadelas: estadiamento TNM e sistema de Nottingham [M.S. thesis], Federal University of Minas Gerais, Belo Horizonte, Brazil, 2006.
  23. T. Yamagami, T. Kobayashi, K. Takahashi, and M. Sugiyama, “Prognosis for canine malignant mammary tumors based on TNM and histologic classification,” The Journal of Veterinary Medical Science, vol. 58, no. 11, pp. 1079–1083, 1996. View at Scopus
  24. W. Misdorp, E. Cotchin, J. F. Hampe, A. G. Jabara, and J. von Sandersleben, “Canine malignant mammary tumours. II. Adenocarcinomas, solid carcinomas and spindle cell carcinomas,” Veterinary Pathology, vol. 9, no. 6, pp. 447–470, 1972. View at Scopus
  25. W. Misdorp, “Tumors of the mammary gland,” in Tumours in Domestic Animals, pp. 575–606, Iowa State Press, Ames, Iowa, USA, 4th edition, 2002.
  26. D. E. Bostock, “The prognosis following the surgical excision of canine mammary neoplasms,” European Journal of Cancer and Clinical Oncology, vol. 11, no. 6, pp. 389–396, 1975. View at Scopus
  27. A. C. Bertagnolli, E. Ferreira, E. J. Dias, and G. D. Cassali, “Canine mammary mixed tumours: immunohistochemical expressions of EGFR and HER-2,” Australian Veterinary Journal, vol. 89, no. 8, pp. 312–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. G. Man, L. Tai, R. Barner et al., “Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion,” Breast Cancer Research, vol. 5, no. 6, pp. R231–R241, 2003. View at Scopus
  29. A. E. Los de Monteros, M. Y. Millán, J. Ordás, L. Carrasco, C. Reymundo, and J. Martín Las de Mulas, “Immunolocalization of the smooth muscle-specific protein calponin in complex and mixed tumors of the mammary gland of the dog: assessment of the morphogenetic role of the myoepithelium,” Veterinary Pathology, vol. 39, no. 2, pp. 247–256, 2002. View at Scopus
  30. Y. G. Man and Q. X. A. Sang, “The significance of focal myoepithelial cell layer disruptions in human breast tumor invasion: a paradigm shift from the "protease-centered" hypothesis,” Experimental Cell Research, vol. 301, no. 2, pp. 103–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Gudjonsson, L. Rønnov-Jessen, R. Villadsen, F. Rank, M. J. Bissell, and O. W. Petersen, “Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition,” Journal of Cell Science, vol. 115, no. 1, pp. 39–50, 2002. View at Scopus
  32. Z. Xu, W. Wang, C. X. Deng, and Y. G. Man, “Aberrant p63 and WT-1 expression in myoepithelial cells of pregnancy-associated breast cancer: implications for tumor aggressiveness and invasiveness,” International Journal of Biological Sciences, vol. 5, no. 1, pp. 82–96, 2009. View at Scopus
  33. U. Hinrichs, G. R. Rutteman, and H. Nederbragt, “Stromal accumulation of chondroitin sulphate in mammary tumours of dogs,” British Journal of Cancer, vol. 80, no. 9, pp. 1359–1365, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Erdélyi, D. H. M. Nieskens, J. E. Van Dijk, L. Vass, and H. Nederbragt, “Immunohistochemical evaluation of versican, in relation to chondroitin sulphate, in canine mammary tumours,” Histology and Histopathology, vol. 18, no. 4, pp. 1067–1080, 2003. View at Scopus
  35. I. Erdélyi, A. J. A. M. Van Asten, J. E. Van Dijk, and H. Nederbragt, “Expression of versican in relation to chondrogenesis-related extracellular matrix components in canine mammary tumors,” Histochemistry and Cell Biology, vol. 124, no. 2, pp. 139–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. C. Allen, “So-called mixed tumors of the mammary gland of dog and man,” Archives of Pathology, vol. 29, pp. 589–624, 1940.
  37. C. Huggins and P. V. Moulder, “Studies of the mammary tumours of dog. I. Lactation and the influence of ovariectomy and suprarenalectomy thereon,” The Journal of Experimental Medicine, vol. 80, no. 5, pp. 441–454, 1944.
  38. F. Bloom, Pathology of the Dog and Cat: The Genitourinary System With Clinical Considerations, American Veterinary Publications, 1954.
  39. E. Cotchin, “Mammary neoplasms of the bitch,” The Journal of Comparative Pathology and Therapeutics, vol. 68, pp. 1–22, 1958. View at Scopus
  40. S. Erichsen, “A histochemical study of mixed tumors of the canine mammary gland,” Acta Pathology and Microbiology Scandinavica, vol. 36, pp. 490–502, 1955.
  41. J. V. Hurley and A. G. Jabara, “Properties of “cartilage” in canine mammary tumors,” Archives of Pathology, vol. 77, pp. 343–347, 1964. View at Scopus
  42. L. T. Pulley, “Ultrastructural and histochemical demonstration of myoepithelium in mixed tumors of the canine mammary gland,” American Journal of Veterinary Research, vol. 34, no. 12, pp. 1513–1522, 1973. View at Scopus
  43. S. Tateyama and E. Cotchin, “Alkaline phosphatase reaction of canine mammary mixed tumours: a light and electron microscopic study,” Research in Veterinary Science, vol. 23, no. 3, pp. 356–364, 1977. View at Scopus
  44. S. Tateyama and E. Cotchin, “Electron microscopic observations on canine mixed mammary tumors, with special reference to cytoplasmic filamentous components,” American Journal of Veterinary Research, vol. 39, no. 9, pp. 1494–1501, 1978. View at Scopus
  45. E. Destexhe, L. Lespagnard, M. Degeyter, R. Heymann, and F. Coignoul, “Immunohistochemical identification of myoepithelial, epithelial, and connective tissue cells in canine mammary tumors,” Veterinary Pathology, vol. 30, no. 2, pp. 146–154, 1993. View at Scopus
  46. K. Arai, H. Nakano, M. Shibutani, M. Naoi, and H. Matsuda, “Expression of class II β-tubulin by proliferative myoepithelial cells in canine mammary mixed tumors,” Veterinary Pathology, vol. 40, no. 6, pp. 670–676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Arai, K. Uehara, and Y. Nagai, “Expression of type II and type XI collagens in canine mammary mixed tumors and demonstration of collagen production by tumor cells in collagen gel culture,” Japanese Journal of Cancer Research, vol. 80, no. 9, pp. 840–847, 1989. View at Scopus
  48. K. Arai, K. Uehara, and Y. Nagai, “Simultaneous expression of type IX collagen and an inhibin-related antigen in proliferative myoepithelial cells with pleomorphic adenoma of canine mammary glands,” Japanese Journal of Cancer Research, vol. 86, no. 6, pp. 577–584, 1995. View at Scopus
  49. S. Tateyama, K. Uchida, T. Hidaka, M. Hirao, and R. Yamaguchi, “Expression of bone morphogenetic protein-6 (BMP-6) in myoepithelial cells in canine mammary gland tumors,” Veterinary Pathology, vol. 38, no. 6, pp. 703–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Akiyoshi, K. Uchida, and S. Tateyama, “Expression of bone morphogenetic protein-6 and bone morphogenetic protein receptors in myoepithelial cells of canine mammary gland tumors,” Veterinary Pathology, vol. 41, no. 2, pp. 154–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Kawabata, K. Okano, K. Uchida, R. Yamaguchi, T. Hayashi, and S. Tateyama, “Co-localization of chondromodulin-I (ChM-I) and bone morphogenetic protein-6 (BMP-6) in myoepithelial cells of canine mammary tumors,” The Journal of Veterinary Medical Science, vol. 67, no. 11, pp. 1097–1102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Arai, M. Naoi, and K. Uehara, “Immunohistochemical examination of neural cell adhesion molecule (NCAM), tenascin and fibronectin on the development of cartilaginous tissue in canine mammary mixed tumors,” The Journal of Veterinary Medical Science, vol. 56, no. 4, pp. 809–811, 1994. View at Scopus
  53. G. D. Cassali, A. C. Bertagnolli, F. Gärtner, and F. Schmitt, “Canine mammary tumours: a quantitative DNA study using static cytometry,” Revista Espanola de Patologia, vol. 44, no. 4, pp. 195–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. A. C. Bertagnolli, P. Soares, B. van Asch et al., “An assessment of the clonality of the components of canine mixed mammary tumours by mitochondrial DNA analysis,” The Veterinary Journal, vol. 182, no. 2, pp. 269–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Ferletta, J. Grawé, and E. Hellmén, “Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature,” The International Journal of Developmental Biology, vol. 55, pp. 791–799, 2011.
  56. M. L. Voz, W. J. Van de Ven, and K. Kas, “First insights into the molecular basis of pleomorphic adenomas of the salivary glands,” Advances in Dental Research, vol. 14, no. 1, pp. 81–83, 2000. View at Scopus
  57. P. L. Auclair and G. L. Ellis, “Atypical features in salivary gland mixed tumors: their relationship to malignant transformation,” Modern Pathology, vol. 9, no. 6, pp. 652–657, 1996. View at Scopus
  58. E. Ferreira, A. C. Bertagnolli, M. F. Cavalcanti, F. C. Schmitt, and G. D. Cassali, “The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours,” Veterinary and Comparative Oncology, vol. 7, no. 4, pp. 230–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. E. Lewis, K. D. Olsen, and T. J. Sebo, “Carcinoma ex pleomorphic adenoma: pathologic analysis of 73 cases,” Human Pathology, vol. 32, no. 6, pp. 596–604, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. E. S. Wargotz and H. J. Norris, “Metaplastic carcinomas of the breast. I. Matrix-producing carcinoma,” Human Pathology, vol. 20, no. 7, pp. 628–635, 1989. View at Scopus
  61. V. A. Livolsi and K. H. Perzin, “Malignant mixed tumors arising in salivary glands. I. Carcinoma arising in benign mixed tumors: a clinicopathologic study,” Cancer, vol. 39, no. 5, pp. 2209–2230, 1977. View at Scopus
  62. V. C. de Araújo, A. Altemani, C. Furuse, M. T. Martins, and N. S. de Araújo, “Immunoprofile of reactive salivary myoepithelial cells in intraductal areas of carcinoma ex-pleomorphic adenoma,” Oral Oncology, vol. 42, no. 10, pp. 1011–1016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Chhieng, M. Cranor, M. E. Lesser, and P. P. Rosen, “Metaplastic carcinoma of the breast with osteocartilaginous heterologous elements,” American Journal of Surgical Pathology, vol. 22, no. 2, pp. 188–194, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Yamamoto, Y. Kishimoto, I. I. Wistuba et al., “DNA analysis at p53 locus in carcinomas arising from pleomorphic adenomas of salivary glands: comparison of molecular study and p53 immunostaining,” Pathology International, vol. 48, no. 4, pp. 265–272, 1998. View at Scopus
  65. J. S. Morris, C. Nixon, O. J. A. King, I. M. Morgan, and A. W. Philbey, “Expression of TopBP1 in canine mammary neoplasia in relation to histological type, Ki67, ERα and p53,” The Veterinary Journal, vol. 179, no. 3, pp. 422–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Deguchi, H. Hamano, and Y. Hayashi, “c-myc, ras p21 and p53 expression in pleomorphic adenoma and its malignant form of the human salivary glands,” Acta Pathologica Japonica, vol. 43, no. 7-8, pp. 413–422, 1993. View at Scopus
  67. S. Di Palma, A. Skálová, T. Vanìèek, R. H. W. Simpson, I. Stárek, and I. Leivo, “Non-invasive (intracapsular) carcinoma ex pleomorphic adenoma: recognition of focal carcinoma by HER-2/neu and MIB1 immunohistochemistry,” Histopathology, vol. 46, no. 2, pp. 144–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Matsubayashi and T. Yoshihara, “Carcinoma ex pleomorphic adenoma of the salivary gland: an immunohistochemical study,” European Archives of Oto-Rhino-Laryngology, vol. 264, no. 7, pp. 789–795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Gauchotte, L. Coffinet, E. Schmitt et al., “Salivary gland anlage tumor: a clinicopathological study of two cases,” Fetal & Pediatric Pathology, vol. 30, no. 2, pp. 116–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. R. F. do Prado, A. Consolaro, and L. A. Taveira, “Expression of betacatenin in carcinoma in pleomorphic adenoma, pleomorphic adenoma and normal salivary gland: an immunohistochemical study,” Medicina Oral, Patología Oral y Cirugía Bucal., vol. 11, no. 3, pp. E247–E251, 2006. View at Scopus