About this Journal Submit a Manuscript Table of Contents
Veterinary Medicine International
Volume 2012 (2012), Article ID 638928, 6 pages
http://dx.doi.org/10.1155/2012/638928
Research Article

Ovarian Follicular Atresia of Ewes during Spring Puerperium

1Department of Normal Anatomy, Histology and Physiology, Institute of Physiology, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia
2Clinic of Horses, University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia

Received 24 October 2011; Revised 2 February 2012; Accepted 3 February 2012

Academic Editor: Sumanta Nandi

Copyright © 2012 Radoslava Vlčková et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Gong, D. G. Armstrong, G. Baxter, C. O. Hogg, P. C. Garnsworthy, and R. Webb, “The effect of increased dietary intake on superovulatory response to FSH in heifers,” Theriogenology, vol. 57, no. 6, pp. 1591–1602, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. G. Hunter, R. S. Robinson, G. E. Mann, and R. Webb, “Endocrine and paracrine control of follicular development and ovulation rate in farm species,” Animal Reproduction Science, vol. 82-83, pp. 461–477, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. X. Hernandez, L. Bodin, D. Chesneau et al., “Relationship between MT1 melatonin receptor gene polymorphism and seasonal physiological responses in Île-de-France ewes,” Reproduction Nutrition Development, vol. 45, no. 2, pp. 151–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Greenwald and P. F. Terranova, “Follicular selection and its control,” in The Physiology of Reproduction, E. Knobil and J. D. Neill, Eds., pp. 387–445, Raven Press, New York, NY, USA, 1988.
  5. J. L. Tilly, K. I. Kowalski, D. W. Schomberg, and A. J. W. Hsueh, “Apoptosis in atretic ovarian follicles is associated with selective decreases in messenger ribonucleic acid transcripts for gonadotropin receptors and cytochrome P450 aromatase,” Endocrinology, vol. 131, no. 4, pp. 1670–1676, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. W. Hsueh, H. Billig, and A. Tsafriri, “Ovarian follicle atresia: a hormonally controlled apoptotic process,” Endocrine Reviews, vol. 15, no. 6, pp. 707–724, 1994. View at Scopus
  7. A. M. Rosales-Torres, A. Avalos-Rodríguez, M. Vergara-Onofre et al., “Multiparametric study of atresia in ewe antral follicles: histology, flow cytometry, internucleosomal DNA fragmentation, and lysosomal enzyme activities in granulosa cells and follicular fluid,” Molecular Reproduction and Development, vol. 55, no. 3, pp. 270–281, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Y. Hsu and A. J. W. Hsueh, “Tissue-specific Bcl-2 protein partners in apoptosis: an ovarian paradigm,” Physiological Reviews, vol. 80, no. 2, pp. 593–614, 2000. View at Scopus
  9. M. D. DeMoura, D. Chamoun, C. E. Resnick, and E. Y. Adashi, “Insulin-like growth factor (IGF)-I stimulates IGF-I and Type 1 IGF receptor expression in cultured rat granulosa cells: autocrine regulation of the intrafollicular IGF-I system,” Endocrine, vol. 13, no. 1, pp. 103–110, 2000. View at Scopus
  10. D. G. Armstrong, T. G. McEvoy, G. Baxter et al., “Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin-like growth factor system,” Biology of Reproduction, vol. 64, no. 6, pp. 1624–1632, 2001. View at Scopus
  11. Y. S. Yu, H. S. Sui, Z. B. Han, W. Li, M. J. Luo, and J. H. Tan, “Apoptosis in Granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors,” Cell Research, vol. 14, no. 4, pp. 341–346, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. Huet, P. Monget, C. Pisselet, and D. Monniaux, “Changes in extracellular matrix components and steroidogenic enzymes during growth and atresia of antral ovarian follicles in the sheep,” Biology of Reproduction, vol. 56, no. 4, pp. 1025–1034, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pfaffl, “Development and validation of an externally standardised quantitative insulin-like growth factor-I RT-PCR using lightcycler SYBR green I technology,” in Rapid Cycle Real-Time PCR, S. Meuer, C. Wittwear, and K. Nakagawara, Eds., pp. 281–291, Springer, Berlin, Germany, 2001.
  14. G. B. Marion, H. T. Gier, and J. B. Choudary, “Micromorphology of the bovine ovarian follicular system,” Journal of Animal Science, vol. 27, no. 2, pp. 451–465, 1968. View at Scopus
  15. M. A. Driancourt, R. C. Fry, I. J. Clarke, and L. P. Cahill, “Follicular growth and regression during the 8 days after hypophysectomy in sheep,” Journal of Reproduction and Fertility, vol. 79, no. 2, pp. 635–641, 1987. View at Scopus
  16. I. Maraček, V. Hendrichovský, M. Krajničáková, and L. Lazár, “Dominant follicle selection in sheep after cloprostenol administration,” Slovenský veterinársky časopis, vol. 18, no. 1-2, pp. 9–14, 1993.
  17. J. A. Hall, R. A. Dailey, E. K. Inskeep, and P. E. Lewis, “Influence of the corpus luteum of pregnancy on ovarian function in postpartum ewes,” Journal of Animal Science, vol. 71, no. 11, pp. 3067–3072, 1993. View at Scopus
  18. R. Vlčková, I. Valocký, G. Lazar, D. Sopková, and I. Maraček, “Histological and ultrasonographic monitoring of folliculogenesis in puerperal ewes after spring lambing,” Acta Veterinaria Brno, vol. 77, no. 1, pp. 65–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Vacek, “Histological technique,” in Histology and Histological Technique, pp. 267–488, Vydavatel'stvo Osveta, Martin, Slovakia, 1990.
  20. W. J. Murdoch, “Comparative morphometry and steroidogenic function of antral ovine follicles destined for ovulation or atresia,” Domestic Animal Endocrinology, vol. 9, no. 3, pp. 219–224, 1992. View at Scopus
  21. K. E. Turnbull, A. W. Braden, and P. E. Mattner, “The pattern of follicular growth and atresia in the ovine ovary,” Australian Journal of Biological Sciences, vol. 30, no. 3, pp. 229–241, 1977. View at Scopus
  22. H. F. Irving-Rodgers, I. L. Van Wezel, M. L. Mussard, J. E. Kinders, and R. J. Rodgers, “Atresia revisited: two basic patterns of atresia of bovine antral follicles,” Reproduction, vol. 122, no. 5, pp. 761–775, 2001. View at Scopus
  23. I. L. van Wezel, A. M. Dharmarajan, T. C. Lavranos, and R. J. Rodgers, “Evidence for alternative pathways of granulosa cell death in healthy and slightly atretic bovine antral follicles,” Endocrinology, vol. 140, no. 6, pp. 2602–2612, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. M. Y. Khandoker, K. Imai, T. Takahashi, and K. Hashizume, “Role of gelatinase on follicular atresia in the bovine ovary,” Biology of Reproduction, vol. 65, no. 3, pp. 726–732, 2001. View at Scopus
  25. L. J. Clark, H. F. Irving-Rodgers, A. M. Dharmarajan, and R. J. Rodgers, “Theca interna: the other side of bovine follicular atresia,” Biology of Reproduction, vol. 71, no. 4, pp. 1071–1078, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus