About this Journal Submit a Manuscript Table of Contents
Veterinary Medicine International
Volume 2013 (2013), Article ID 347086, 9 pages
http://dx.doi.org/10.1155/2013/347086
Research Article

Interaction of Bordetella bronchiseptica and Its Lipopolysaccharide with In Vitro Culture of Respiratory Nasal Epithelium

1Department of Veterinary Pathology, University of Applied and Environmental Sciences, Bogotá, Colombia
2GlaxoSmithKline Consumer Healthcare, St George's Avenue, Weybridge, Surrey KT13 0DE, UK
3Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, National University of Colombia, Bogotá, Colombia

Received 21 November 2012; Revised 4 February 2013; Accepted 7 February 2013

Academic Editor: Jyoji Yamate

Copyright © 2013 Carolina Gallego et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The nasal septa of fetal rabbits at 26 days of gestation were harvested by cesarean section of the does while under anesthesia and then exposed to Bordetella bronchiseptica or its lipopolysaccharide (LPS) for periods of 2 and 4 hours. A total of 240 explants were used. The tissues were examined using the Hematoxylin & Eosin technique. Then, semithin sections (0.5  m) were stained with toluidine blue and examined with indirect immunoperoxidase (IPI) and lectin histochemistry. The most frequent and statistically significant findings were as follows: (1) cell death and increased goblet cell activity when exposed to bacteria and (2) cell death, cytoplasmic vacuolation and infiltration of polymorphonuclear leukocytes when exposed to LPS. The lesions induced by the bacterium were more severe than with LPS alone, except for the cytoplasmic vacuolation in epithelial cells. IPI stained the ciliated border of the epithelium with the bacterium more intensely, while LPS lectin histochemistry preferentially labeled the cytoplasm of goblet cell. These data indicate that B. bronchiseptica and its LPS may have an affinity for specific glycoproteins that would act as adhesion receptors in both locations.